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Abstract

The open-source Bmad software library has been devel-
oped for simulating both charged particle beams and X-
rays. Owing to its modular, object-oriented design, Bmad
has proved to be versatile, and is currently used in a num-
ber of programs at Cornell’s Laboratory for Elementary-
Particle Physics. This paper will discuss the design of the
Bmad library and how features such as the ability to sim-
ulate overlapping elements, the ability to define the action
of control-room “knobs,” and the ability to select among
different tracking algorithms, have all contributed to a flex-
ible simulation environment that eases the task of both pro-
grammers and users alike. Also discussed are the uses that
Bmad has been put to, including machine control and the
integration of particle beam and X-ray simulations.

INTRODUCTION

Bmad, an open-source software library for simulating
both charged particle beams and X-rays, has been in devel-
opment at Cornell beginning in the 1990s[1]. Originally,
the syntax for the lattice files for Bmad was patterned af-
ter the syntax of the MAD program[2]. Since, at that time,
only a subset of the MAD language was used, the name
“Baby MAD” or “Bmad” for short was chosen.

The initial purpose for developing Bmad was modest:
Simply to be able to compute Twiss parameters and the
closed orbit, and to provide a standard lattice description
format. As Bmad evolved, the scope of Bmad expanded
so that currently Bmad can simulate such things as spin,
X-ray photons, coherent synchrotron radiation, intra-beam
scattering, Touschek effect, etc., etc.

Bmad has proved to be versatile and, as a result, is now
used in a number of programs at Cornell. Experience with
Bmad has shown that there are a number of design features
that have made Bmad especially useful. The purpose of
this paper is to discuss this and to discuss some of the ap-
plications that Bmad has been used for. Finally, plans for
the future of Bmad will be presented.

DESIGN PHILOSOPHY

The aim of the Bmad project is to:
• Cut down on the time needed to develop programs.
• Minimize computation times.
• Cut down on programming errors.
• Provide a simple mechanism for lattice function cal-

culations from within programs.
∗Work supported by the National Science Foundation under contract

PHY-1002467.

• Provide a flexible and powerful lattice input format.
• Standardize sharing of lattices between programs.

To maximize code reuse, Bmad, written in Fortran, is de-
signed to be object oriented from the ground up. For ex-
ample, it takes only one line of executable code to parse a
lattice file:

type (lat_struct) lat

call bmad_parser(’lat.bmad’, lat)

The call to bmad_parser in this example causes the file
named “lat.bmad” to be parsed and the information to
be stored in a variable named lat of type lat_struct

(equivalent to a C++ class). For communication with C++
code, Bmad defines a set of C++ classes and there are in-
terface routines to convey information between between the
Fortran structures and the C++ classes.

From the beginning, Bmad development has been driven
by the need to solve the practical problems arising from
the requirements of machine simulation, lattice design and
machine control. As a result, one emphasis of Bmad de-
velopment has been on minimizing the bookkeeping tasks
of both programmer and user. There are a number of fea-
tures that have proved to be especially useful in this regard,
and some are discussed below: The ability to superimpose
elements on top of other elements, the ability to slice ele-
ments into pieces, the ability to define controller elements
that control the attributes of other elements, and the ability
to choose the algorithm used for particle tracking.

Superposition of Elements

“Superposition” is the ability to overlap lattice elements

age ring when CESR was an e+/e– collider. As shown in
Fig. 1A, two quadrupoles named q1w and q1e are partially
inside and partially outside the interaction region solenoid
named cleo. In the lattice file, the IR region layout is de-
fined to be

cesr: line = (... q1e, dft1, ip, dft1, q1w ...)

cleo: solenoid, l = 3.51, superimpose, ref = ip

The line named cesr ignores the solenoid and just con-
tains the interaction point marker element named ip which
is surrounded by two drifts named dft1 which are, in turn,
surrounded by the q1w and q1e quadrupoles. The solenoid
is added to the layout on the second line by using su-
perposition. The “ref = ip” indicates that the solenoid is
placed relative to ip. The default, which is used here,
is to place the center of the superimposed cleo element
at the center of the ip reference element. Within a pro-
gram, the representation of the lattice in the lat_struct

structure that Bmad creates will contain two lists: One list,

spatially. Figure 1 shows an example which is a greatly
simplified version of the IR region of Cornell’s CESR stor-
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A) Physical Layout:

B) Bmad Representation:

CLEO

Q1WQ1E
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Lord 
elements:

Tracking 
elements:

CLEOQ1E Q1W

sol_quad
quad
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marker

quad
sol_quad
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Figure 1: Superposition Example. A) Interaction region
layout with quadrupoles overlapping a solenoid. B) The
Bmad lattice representation has a list of split elements to
track through and the undivided “lord” elements. Pointers
(double headed arrows), keep track of the correspondence
between the lords and their “slaves.”

called the “tracking section,” contains the elements that are
needed for tracking particles. In the current example, as
shown in Fig. 1B, the first IR element in the tracking sec-
tion is a quadrupole that represents the part of q1e out-
side of the solenoid. The next element is a combination
solenoid/quadrupole, called a sol_quad, that represents
the part of q1e inside cleo, etc. This sol_quad element
illustrates a restriction on superpositions that the combi-
nation of elements must be able to be represented by a
valid Bmad element type. Bmad does have a combination
solenoid/quadrupole type so superimposing solenoids with
quadrupoles works.

The other list in the lat_struct that Bmad creates is
called the “lord section.” This list will contain the undi-
vided elements which, in this case are q1e, q1w, and cleo.
Pointers are created between the lords and their “slaves”
in the tracking section so that changes in parameters of
the lord elements can be transferred to their corresponding
slaves by calling the appropriate Bmad routines.

Superposition has proven to be very useful. For one,
since Bmad does the bookkeeping of splitting up elements
and keeping the slave element attributes up-to-date, there is
less chance of an error occurring. Another advantage is that
a program itself does not have to “know” about how things
are split since Bmad will take care of the details. Thus, for
example, varying the field strength of the cleo solenoid in
a program is trivial.

Element Slicing

Element “slicing” is similar to superposition discussed
in the previous subsection in that slicing involves dividing
elements longitudinally. The difference is that slicing in-
volves crating a temporary structure within a program that
represents a given section of the divided element. Slicing
is hidden from the program’s user.

Slicing relieves the programmer of a number of burden-

some bookkeeping details when doing calculations that in-
volve points internal to the elements. For simulations of
such things like intra-beam scattering, Touschek effect, and
coherent synchrotron radiation, the ability to step through
an element slice-by-slice is essential.

Slicing also alleviates the need to, for example, split
quadrupoles in two in the lattice file since calculating, say,
the Twiss parameters at the center of any element is easily
done on-the-fly using slicing.

Controllers

The ability to define controller elements that control the
attributes of other elements has proved to be a very useful
feature. Controllers can be used to simulate such things as
the effect of control room “knobs” or simulate power sup-
plies that power multiple magnets. A specialized girder

controller can be used to simulate that effect of a support
structure that supports a set of lattice elements. The follow-
ing shows an example from a standard CESR lattice file:

h20w: overlay = {b20w[hkick] :0.5, &

b21w[hkick] :0.5}, hkick

h20w[hkick] = 0.01

For historical reasons, a controller is called an overlay.
Here a controller named h20w controls the horizontal kick
(hkick) attribute of two magnets named b20w and b21w.
Setting the hkick attribute of the controller to 0.01 in the
second line sets the hkick attribute of b20w and b21w to
0.005 each due to the 0.5 coefficients set in the first line.

Being able to define controllers as “just another element”
simplifies program development and there is less of a main-
tenance burden having to maintain separate files specifying
the lattice and who controls what.

Tracking Methods

Tracking and transfer map calculations (henceforth
“tracking” will mean either one) are at the heart of many
simulations, and different problems will have different re-
quirements in terms of accuracy, speed, etc. To provide
flexibility, Bmad implements a number of different track-
ing methods and what method is used can be selected on an
element-by-element basis.

The commonly used “bmad_standard” method uses
thick element formulas to quickly perform tracking. While
not symplectic, this tracking method is useful for such tasks
as computing Twiss parameters and finding the closed or-
bit. As an example, the program CesrV, which is used for
data taking, machine corrections, and machine analysis at
CESR, is able to calculate Twiss and coupling corrections
in a few seconds using a single 2.67 GHz Xeon based com-
puter. In this case, there are around 200 variables and 300
data values in a lattice with about 2000 elements.

For symplectic tracking, the “symp_lie_ptc” method,
which uses Étienne Forest’s PTC package[3], is available.
Alternatively, the “taylor” method uses PTC to construct
a Taylor map for tracking. Taylor tacking is faster than
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Figure 2: Example of a Tao plotting window.

symp_lie_ptc but will have a limited domain in phase space
where the tracking is accurate.

There are a number of other tracking methods such
as “runge_kutta” to track through a field profile, “linear”
which just uses the linear part of the transfer map, and “cus-
tom” which allows for tracking with custom code.

BMAD ECOSYSTEM

The versatility of Bmad has resulted in Bmad being used
as the computational engine powering a number of pro-
grams. It is thus possible to talk about the Bmad “ecosys-
tem” Examples include

bbu_program A program to simulate the beam-beam
breakup instability in Energy Recovery Linacs[4].

cesrv Data taking (orbits, phase/coupling, etc), simulation,
and correction program for Cornell’s CESR ring[5].

dark_current_tracker Program for simulating dark cur-
rent electrons generated in a machine[6].

freq_map Frequency map program.

ibs_sim Analytic intra-beam scattering (IBS) calculation.

synrad3d Tracking of synchrotron radiation photons in
the beam chamber including reflections[7].

tao A general purpose design and simulation program[8].

touschek_track Tracking of Touschek particles to deter-
mine where they are lost[9].

Three examples are illustrated below.

Tao: General Purpose Simulation Program

The disadvantage of Bmad, common to all software li-
braries, is that by itself it is not a program. That is, it can-
not be run straight out-of-the-box. Over time, it became
apparent that there was a great need for a general purpose

program that could be used without any programming ef-
fort. As a result, a program called Tao[8] (Tool for Ac-
celerator Optics) has been developed that uses Bmad as its
calculational engine.

Tao has a general nonlinear optimization algorithm that
can do such things as lattice design and orbit response ma-
trix analysis. It has flexible plotting capabilities as dis-
played in Figs. 2 and 4. In many ways, Tao is similar to
programs like MAD. A significant difference is that Tao is
built from the ground up to be modular and extensible and
so it is relatively easily, to add custom commands to Tao.
For example by writing custom commands to read data and
set magnet strengths, Tao can be become an on-line control
system program to do such things as orbit flattening, etc.

The combination of Bmad and Tao thus gives the best
of all possible worlds: The flexibility of a toolkit coupled
with the ease of use of a program.

Cornell ERL DOOCS Interface

A control program based upon DOOCS (Distributed Ob-
ject Oriented Control System), written in C++ and Java, has
been developed for the Cornell Energy Recovery Linac[10]
(ERL) test machine. Bmad was interfaced to this program
for orbit and Twiss parameter calculations. A custom in-
terface layer was developed to be able to translate between
the C++ structures on the DOOCS side and the appropri-
ate Bmad structures on the Fortran side. To simplify code
development, use was made of the Bmad interface between
Bmad Fortran structures and equivalent Bmad C++ struc-
tures. For lattice elements, the Bmad structure on the For-
tran side is an ele_struct. On the C++ side, the equiv-
alent Bmad class is called C_ele. To transfer element in-
formation from DOOCS to Bmad, for example, a C_ele

instance is created on the C++ side of the interface and the
appropriate information is transferred to it. Simplified, the
code looks like:

C_ele quad;

quad.name = "q1";

quad.key = QUADRUPOLE;

quad.value(B1_GRADIENT) = q_grad;
The quad instance is then passed to the Fortran side of the
interface. On the Fortan side the code looks like:

subroutine ele_convert (c_ele)

type (c_ele_struct) c_ele

type (ele_struct) ele

call ele_to_f (c_ele, ele)
The call to ele_to_f effects the transfer of information to
the ele_struct and the element data can now be used by
Bmad proper.

While not as clean as interfacing between two C++ code
bases – the interface has two layers instead of one – the
structure/class interface provided by Bmad greatly simpli-
fies the integration of Bmad with C++ based code.

Dark Current Simulation

An example of the utility of Bmad in developing
new simulation code is the dark_current_tracker
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Figure 3: Dark current tracking in an RF accelerating cav-
ity. Only part of the cavity is shown. The black circles are
points of high field where particles are generated.

program[6]. The problem was to simulate the trajectories
of field emitted electrons from the walls of RF cavities.
One of the first tasks of the program was to pull in infor-
mation on the lattice including the beam chamber walls. At
the time, Bmad had a model for specifying the wall for X-
ray focusing capillaries, and it was decided that this model
could be used for the beam chamber walls. This saved an
appreciable amount programming time and effort. It also
meant that the chamber wall could be specified in the lat-
tice file which simplified the user interface.

Bmad provided many helper routines for the dark current
simulation for doing such things as determining whether a
particle had hit the wall, etc. Missing was suitable track-
ing code since the particles could reverse directions and
the standard Bmad tracking methods are s-based and so as-
sumed that particles always traveled in one direction. To
overcome this, a time-based tracking routine was devel-

number of particles generated at high field regions in an
RF cavity are shown.

With Bmad, the amount of work needed to create the
simulation program was greatly reduced and, in turn, the
capability of Bmad was increased by inclusion of the new
tracking method which could be invoked in any program
simply by setting an element’s tracking method to use it.
Additionally, the added ability to be able to specify a beam
chamber wall will help with future simulations.

X-RAY SIMULATIONS

With the advent of Cornell’s ERL project, one evolu-
tionary track that Bmad has been following is the ability
to simulate X-rays along with particle beams to provide an
integrated simulation environment. One issue is the ability
to define the entire machine in single lattice which con-
tains both accelerator and X-ray components. Being able
to treat the ERL as an integrated whole simplifies a number
of simulations. For example, it simplifies the simultaneous
simulation of the effect of electron beam movement on all
the X-ray lines.

To define a line branching from a machine, Bmad uses
branch and photon_branch elements. A branch or

0 40 80 120 160 200

0

50

-50

x-ray lines

Figure 4: Simple example of the Cornell ERL with four
x-ray lines.

photon_branch element has zero length and marks the
beginning of the branch line. branch elements are for
describing such things as beam dumps where the charged
particle being tracked can branch to. For X-ray lines, the
photon_branch element is used. For example the follow-
ing in a lattice file creates a branch:

br1: photon_branch, superimpose, &

ref = sa01, to = tg_mono

tg_mono: line = (...)

Here br1 is a photon_branch which is placed at the cen-
ter of an element named sa01. The associated X-ray line
(not shown) is called tg_mono. There is no limit as to
how many branches a lattice can have and branch lines can

For X-ray lines, besides the standard elements like
drift and marker, There are a number of specialized ele-
ments that Bmad defines:

capillary, mirror,

crystal, multilayer_mirror

The crystal element supports both Bragg and Laue
diffraction. The capillary element simulates X-ray fo-
cusing within a fine capillary[11]. The mirror element is a
bendable mirror, and the multilayer_mirror is a mirror
that depends upon multiple thin layers of dielectric material
for reflection.

PRESENT WORK AND FUTURE PLANS

Bmad has had a steady evolution due to a steadily in-
creasing demand for varying types of simulations. Cur-
rently, there are a number of areas of active development.

One thread is driven by the desire to be able to simulate
an ERL from generation of the electrons at the gun cath-
ode, through X-ray generation in wigglers and undulators,
to propagating the X-rays to the experimental end stations.
This work has two parts: Developing low energy simula-
tion capabilities and developing X-ray simulations.

The work on low energy simulations is reaching matu-
rity. Recent work, for example, has resulted in the cre-
ation of a e_gun element for simulating the cathode re-
gion of an electron gun. The major outstanding issue is

oped and merged into the Bmad library. Figure 3 shows
a simulation from the program. Here the trajectories of a

themselves contain branches ad infinitum. Figure 4 illus-
trates this showing four X-ray lines attached to an ERL.
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space charge. Since simulating space charge is compli-
cated, rather then reinvent the wheel, the present goal is to
integrate Bmad with existing space charge codes Impact-
T[12] and OPAL[13].

X-ray simulation development is still in it’s infancy.
Photon generation code exists for bends and wigglers but
not for undulators. The first real-world simulations are cur-
rently a work in progress. At this point in time, as men-
tioned in a previous section, Bmad has some locally de-
veloped code for photon tracking through crystals and a
few other elements. Having locally developed code pro-
vides great flexibility for being able to simulate new ef-
fects. However, X-ray simulation can be quite complicated
and it would be advantageous to be able to leverage the ca-
pabilities of existing codes. To this end, a collaboration is
underway to interface Bmad with the Shadow[14] photon
simulation code. In the long term, simulation of partially
coherent X-rays would be useful. One possibility that is
being explored is integration with the code SRW[15] de-
veloped by Oleg Chubar.

Up to now, the use of Étienne Forest’s PTC code has
been restricted to tracking through elements one element at
a time. While this provides great flexibility in terms of be-
ing able to choose what type of tracking is used for a given
element, it does not provide a way of using PTC’s power-
ful analysis tools for calculating such things as beam emit-
tances, resonance driving terms, etc. To remedy this, the
appropriate interface code has, of late, been developed so
that Bmad can now create a PTC layout for analysis. This
makes possible the option of using PTC directly with Bmad
simply providing the lattice parsing tools. It just takes two
executable lines of code to construct a PTC layout from a
Bmad lattice file:

type (lat_struct) lat

call bmad_parser (file_name, lat)

call lat_to_ptc_layout (lat)

In addition to the above, there are a number of mi-
nor projects on the drawing board, including development
of nonlinear controllers, improved thread safety in multi-
threaded environments, improved regression testing, and
the interfacing to H5hut[16] – a high-performance library
for storing particle position data.
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