
MAD-X PROGRESS AND FUTURE PLANS
L. Deniau, CERN, Geneva, Switzerland

Abstract

The design efforts for the High Luminosity upgrade of
the Large Hadron Collider (HL-LHC) will require sig-
nificant extensions of the MAD-X code widely used for
designing and simulating particles accelerators. These
changes are framed into a global redesign of the MAD-
X architecture meant to consolidate its structure, increase
its robustness and flexibility, and improve its performance.
Some examples of recent extensions to MAD-X like the
RF-Multipole element will be presented. Improvement for
models and algorithms selection providing better consis-
tency of the results and a wider range of use will be dis-
cussed. The computation efficiency will also be addressed
to profit better of modern technologies. In this paper, we
will describe the last improvements and the future plans of
the project.

INTRODUCTION

The Methodical Accelerator Design (MAD) project has
a long history, aiming to be at the forefront of computa-
tional physics in the field of particle accelerator design and
simulation. The MAD scripting language is de facto the
standard to describe particle accelerators, simulate beam
dynamics, and optimize beam optics.

MAD-X is the successor of MAD-8 and was first re-
leased in June 2002 [1]. It offers most of the MAD-8
functionalities, with some additions, corrections, and ex-
tensions [2]. The most important of these extensions is the
Polymorphic Tracking Code (PTC) of E. Forest [3].

A decade after its first release, MAD-X is still the main
tool used to design and simulate accelerators at CERN. But
its original design was mainly focusing on the urgent needs
for the LHC, and a large part of the code was inherited from
old software written in the 80’s. The framework of the
LHC upgrade studies is a good opportunity to reorganize
and upgrade the overall core of MAD-X to support recent
hardware (64 bit, multicores) and new needs. In parallel,
the project must continue to incorporate new functionali-
ties in the legacy code, like the two recent optical elements
added for modeling thin RF-Multipoles and thin non-linear
lenses with elliptical magnetic potential.

The long-term evolution of MAD-X is an essential as-
pect of the project, because many users around the world
consider the application as one of the most flexible and ac-
curate for optics design, as mentioned in comparisons of
optics codes [4, 5]. Moreover, MAD-X with PTC is often
taken as the reference for benchmarking other codes, and
seen by the community of particle accelerator physicists as
a key tool that is poised to evolve.

In this paper we expose four different aspects of the
project, namely the project improvements and the feature

extensions performed during the past year, and the physics
and application improvements that are planned for the next
couple of years. Each of these aspects addresses different
concerns of the project, which are of equal importance from
our point of view for the future of MAD-X.

PROJECT IMPROVEMENT

Motivations

The MAD-X project falls into the category of middle-
size complex projects. The size of the source code (≈
165K SLOC1) and the number of features provided is not
very large but most of the features rely on very complex
knowledge difficult to implement and support. In this kind
of project, simplicity and discipline should have been the
rule of thumb during the development process, because the
complexity comes inevitably from the implementation of
the provided features. Presumably due to priority issues,
these rules were not strictly followed during the first decade
of development of MAD-X and the drift resulting from the
added complexity has led to the untidy feeling perceived by
the users. The usual software metrics based on the number
of SLOC under-evaluates the complexity of the application.
As a consequence, a new improvement process has been set
out (Fig. 1), starting from the outside layers of the project
to emphasize the restoration of some cross-platform invari-
ants (e.g. build and test system), and to simplify the devel-
opment process (e.g. code organization) before important
new developments is launched.

Global Redesign

The need for a global redesign of MAD-X became obvi-
ous with time, as the amount of resources required to im-
plement new features became exponential or equivalently,
the time to completion with constant resources became log-
arithmic. The observable behavior of the application was
not always matching the users expectations, and the feed-
back from the active MAD community has been collected
during the past decade and recorded into a project tracker.

After some attempts to improve locally the implementa-
tion, it became clear that the process would not converge
to a stable solution because some undecidable and coupled
bugs were found.

Undecidable bugs occur for example, when mem-
ory must be managed in the absence of proper reference
handling or garbage collection: freeing the faulty object
crashes the application while not freeing the object pro-
vokes significant memory leaks that will crash the appli-
cation later. This latter kind of bug can be painful for ap-

1Source Line Of Code

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

211 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

reorganize
source code

setup
build system

setup
website

enforce the
cohesion

information &
resources

bugs & request
follow-up

new tested
release

fast & portable
builds

Tasks Objectives

setup
tracker

setup
test system

Figure 1: Sequence of tasks and corresponding objectives
required before starting new MAD-X developments. The
danger icon mark the difficulty to ensure that tests validate
enough the application.

plications that run MAD-X as a subprocess, like the Java-
API JMAD [6] used by the Optic and Knobs Manage-
ment application, a component of the LHC online model
project [7].

Coupled bugs (i.e. bugs with a life cycle) are more
difficult to identify because they reappear after few debug-
ging cycles, sometimes months later, where the final state
makes the situation worst than the initial state. Some cou-
pled bugs were identified to be a consequence of the abuse
of global variables in the code. Hopefully, tools like Sub-
version and Trac allow keeping history and rolling back the
modifications.

In the light of these attempts, it was concluded that only
a significant redesign of the core could cure the situation.

Improvement Strategy

When it is realized that a large portion of the code needs
to be redesigned, the option often envisaged is to start a new
development from scratch and profit from the lessons learnt
from the previous project. This approach offers more op-
portunities for strategic changes, like adopting better sup-
ported programming languages and tools, but usually re-
quires significant time investment.

In the case of MAD-X, the option retained was to im-
prove the project on the existing ground, making the task

191 functions
18234 lines

co
m

pl
ex

ity

Figure 2: Cyclomatic complexity of functions written in C.
The horizontal red line indicates the complexity threshold
of 10 where it is recommended to split the function into
smaller ones.

more difficult because it has to fit with the legacy design
and code. This strategy was motivated by past experience
to minimize the risk to end up with inadequate project on
the mid-term (e.g. MAD9) and assuring a continuous main-
tainability of the code. The application had to remain oper-
ational at every step of the evolution, a very important point
for satisfying the MAD community. The goal was also to
avoid the problems encountered during the first attempt re-
sulting from the coupled bugs, and to make the process con-
vergent toward a stable solution. The list and the details of
the 24 major tasks achieved during these past months can
be found on the project roadmap “phase one” [8].

Code Complexity

MAD-X has hundreds of large functions involving few
hundred of SLOC each. The cyclomatic complexity2 [9]
was considered as an appropriate software metric (i.e. mea-
suring control flow branches) for this structured program-
ming3 style to identify the critical functions. The Fig. 2
shows the cumulated number of functions above given cy-
clomatic complexity for the C part of the code, which rep-
resent about 20% of the application. The Structured Test-
ing Methodology of the National Institute of Standards and
Technology recommends to split functions with complex-
ity above 10 into smaller units §2.5 [9]. About 20% of all
functions in C, C++ and Fortran are concerned (770 over
3908). Above a complexity of 20, the function becomes a
serious candidate for bugs because it has reached the testa-
bility limit, as too many input variables are needed to cover
all the branches of the function. It is also more difficult for
the developers to grasp the control flow and to identify the
kind of configurations that could result in unexpected or in-
valid states. About 8% of the functions (298 over 3908) are
concerned in MAD-X.

2http://en.wikipedia.org/wiki/Cyclomatic complexity
3By opposition to object oriented programming.

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

212C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

Code Reorganization
The core of MAD-X was developed focusing on the de-

mands for the design of the LHC and the optimization of
its optics. Its architecture appears to be monolithic, weak-
ening the cohesion and strengthening the coupling in the
source code. This single-file approach prevented modu-
lar architecture exposing only well-defined interfaces; all
functions and most variables ended in the global names-
pace, leading to a large state machine with unexpected side
effects.

One of the first major task to reorganize the source code
was to split the tens of thousands C lines of the core into 62
files following the Separation of Concerns principle [10],
and to close the visibility4 of the variables and functions as
much as possible. The reorganization of the core helped to
detect inconsistent function signatures and to correct a cou-
ple of stack frame corruptions. This effort was not enough
to get rid of the structural problems, namely dangling point-
ers, reentrancy and memory leaks, which will be addressed
by the future developments.

Website and Tracker

The MAD-X website [8] has been completely re-
designed to provide the community an easy access to the
information and materials for download: documentations,
examples, accelerator optics and new releases. The online
manual is undergoing important modifications during the
summer 2012. The new website has been visited more than
25000 times during the past six months, testifying the ac-
tivity of the community.

The Trac web application [11] was setup and fed with all
the reported bugs and requests to improve the follow-up of
the pending tickets and backup the solutions. An invalu-
able tool that allowed to detect (non-)convergence of bug
corrections, classify the issues, and steer the priorities to-
ward the users requests. The latter will be mentioned using
Trac ticket numbers all along this paper in order to high-
light the orientation on user requests and projects needs.

Portability and Builds

Another important aspect of the project was the ability
to deliver portably and synchronously the MAD-X releases
for all the main platforms — Linux, MacOS X and Win-
dows — almost automatically, and save the resources pre-
viously allocated to this task. It was important to rely upon
single methodology and technology for building and test-
ing the application, because some identified bugs were re-
sulting from mixing incompatible compilers settings.

For this purpose, a new portable and efficient build sys-
tem has been developed, which handles all the three plat-
forms aforementioned in 32 bit and 64 bit5 architectures,
and allows to build applications and libraries mixing code

4http://en.wikipedia.org/wiki/Scope (computer science)
5The source code of MAD-X is not yet 64 bit ready, therefore this

achievement must be seen as a first step toward 64 bit compliance.

[Jacobian testsuite]
 + test-jacobian (0.00 s) - 1/ 1 : PASSED
 + test-jacobian-2 (0.00 s) - 1/ 1 : PASSED
 + test-jacobian-knobs (0.00 s) - 2/ 2 : PASSED
[RF multipole testsuite]
 + test-rfmultipole (0.00 s) - 9/ 9 : PASSED
 + test-rfmultipole-2 (0.00 s) - 2/ 2 : PASSED
 + test-rfmultipole-3 (0.00 s) - 2/ 2 : PASSED
 + test-rfmultipole-4 (0.00 s) - 2/ 2 : PASSED
[PTC Twiss testsuite]
 + test-ptc-twiss (0.00 s) - 4/ 4 : PASSED

Figure 3: Example showing the output of few test suites
after a run of the MAD-X test system. About a hundred of
tests will be setup by the end of 2012.

written in C, C++, Fortran 77 and Fortran 95. The new
build system supports 12 compilers and provides exten-
sible, portable, and easy-to-configure makefiles. As a
demonstration of its flexibility, it took only a couple of days
to extend the build system to build and distribute MAD-X
and PTC as standalone libraries. The former was a request
from advanced MAD-X users [11] ticket #156, and the lat-
ter was part of the collaboration with the PTC-ORBIT ac-
tivities at CERN [12].

Test System

Before relaunching large-scale development, it was es-
sential to equip MAD-X with an efficient and robust test
system. On the long term, it will give the confidence
that improvements are incremental, and it will avoid un-
expected regressions or undesirable backward incompati-
bilities.

The new test system was implemented as an extension
of the new build system, taking advantage of its portability
and flexibility. In the long term, it fully automatizes hun-
dreds of tests grouped into test suites (see Fig. 3), which
could be run as often as needed to check the correct behav-
ior of the MAD-X components; a task that was performed
manually and was taking days beforehand. Another pur-
pose is to check the stability of the numerical algorithms
across combinations of platforms and builds settings.

At the time of writing, the new test system already re-
vealed a dozen of bugs never detected before, like the asyn-
chronous outputs between C and Fortran when executed
on Windows in batch mode and built with GNU compil-
ers (tickets #159, #160), the truncation of outputs on Win-
dows when built with Intel compilers (ticket #161) or the
implicit drifts computation during beam-lines construction
that varies between platforms (ticket #155).

The test process is schematized in Fig. 4. The principle
is to run a single MAD-X job for each test, and to compare
all the output and data files generated (purple boxes) with
their reference files (yellow boxes). This black box testing6

process relies heavily on the numdiff tool, a new program
developed for running test suites that need to compare un-
formatted files with plain numerical content, and where text

6By opposition to white box or glass box testing methods.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

213 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

test-ptc-twiss.madx

MAD-X
test-ptc-twiss.out

ptc-twiss-table.out

ptc-twiss-map.out

ptc-twiss-table.ref
ptc-twiss-table.cfg

test-ptc-twiss.ref
test-ptc-twiss.cfg

ptc-twiss-map.ref
ptc-twiss-map.cfg

PASSED

FAILED

OR

NUMDIFF

Figure 4: Schematic description of the process used to test
MAD-X components. This PTC Twiss test runs a single
madx job that generates three outputs. The yellow boxes
are reference files provided to numdiff by the test system
and backup on SVN.

and numbers can be arbitrarily mixed [13].
This numdiff tool is able to deal efficiently with user-

defined constraints applicable to numerical comparisons,
and understand complex specifications with both, numer-
ical precision and physical accuracy. The configuration
files use a simple format similar to crontab files to spec-
ify the constraints, i.e. Fig. 5. Most of the time, table-like
files (e.g. Twiss and Survey tables) can be compared di-
rectly using the default behavior of numdiff, which always
treats input numbers as floating point values independently
of their string representation. This makes the tests easy to
configure and portable, and avoid spurious alarms to be re-
ported by tests run on different platforms or with different
build settings.

Future Plans
The project improvement is planned to finish by the end

of 2012, once the following list of items will be achieved:

• Setup more tests
• Cleanup the examples
• Cleanup the documentation
• Produce “pro” release 5.01.00

Development releases of MAD-X are actually untested re-
leases that include most recent extensions (see next sec-
tion) and bug corrections. After the completion of these
items, the baseline will be to check the development re-
leases against all the registered tests, and the production
releases against all the registered tests augmented with the
CERN studies. This will put the MAD project into a posi-
tion where new developments will be possible and safe.

RECENT EXTENSIONS
In this section, we present recent extensions that have

been added to MAD-X. They have been implemented into

Test config for the Jacobian knobs

file test-jacobian-knobs.cfg

rows cols constraints

1-7 * skip # head banner

149-$ * skip # tail banner

first matching

37-38 1-2 rel=1e-12

39 2 abs=1e-21 # from job

41 1 rel=1e-12

second matching

109-110 1-2 rel=1e-12

111 2 abs=1e-21 # from job

113 1 rel=1e-12

Figure 5: Example of numdiff configuration file used for
the test of the matching command using the Jacobian algo-
rithm with knobs.

the legacy code, in parallel to the project improvements
aforementioned, and following the requirements of CERN
projects like HL-LHC and the concerns registered on [11].

RF-multipole [14] (Tickets #104, #114)

Motivation The electromagnetic field of accelerating
structures and crab-cavities can exhibit undesired trans-
verse field components due to asymmetries in the azimuthal
direction of the element geometry, for instance in the input
and output power couplers. Tracking simulations are per-
formed to evaluate the impact of such transverse RF-kicks
on the beam dynamics [15].

Model The RF-field is decomposed into pulsed normal
and skew components similarly to the multipolar field de-
composition used to model the magnetic elements [16]:

Cn = Bn + i An. (1)

The RF-multipolar coefficients oscillate at the same angu-
lar frequency ωRF as the generating electromagnetic field,
and vary with the relative longitudinal position z = −c∆t
of the particle experiencing the kick to the synchronous
particle. Hence, the formalism of Eq. 1 can be written as:

C̃n(z) = B̃n(z) + i Ãn(z), (2)

with
B̃n(z) = Re

[
Bn e

i(ϑn−kRFz)
]
,

Ãn(z) = Re
[
An e

i(ϕn−kRFz)
]
,

(3)

where kRF is the RF wave number (kRFz = −ωRF∆t),
and ϑn and ϕn are the n-th normal and skew phases.
Hence, to characterize a RF-Multipole element, it is nec-
essary to specify the RF voltage VRF, frequency fRF and

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

214C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

no modulation

late particle ahead particle

ahead particle

RF modulationlate particle

(a) (b)

x x

zz

Figure 6: In an ordinary multipole (a), each particle expe-
riences a kick that depends only on its transverse coordi-
nates; in a RF-Multipole (b), the strength of the kick is also
a function of the relative longitudinal coordinate z.

phase ϑRF, plus the amplitude and the phase of each nor-
mal and skew harmonic:

RF-Multipole:

VRF RF voltage
fRF, ϑRF RF freq. & phase,
Cn = Bn + i An 2× n amplitudes,
φn = ϑn + i ϕn 2× n phases.

Within MAD-X, the convention is to provide the kicks ex-
pressed in terms of the integrated multipole strength KnL
instead of the field multipoles:

Bn + iAn =
1

n!
[KN,nL+ iKS,nL]

=
1

n!
[KN,L,n + iKS,L,n]

(4)

Physics The Hamiltonian of an ultra-relativistic parti-
cle traversing a thin RF-Multipole is similar to that of an
ordinary thin multipole with RF modulation due to the ro-
tating harmonics, plus a zero-order term for the longitudi-
nal acceleration [17]:

H =− 1

kRF

qVRF

psc
cos(ϑRF − kRFz)

+

N∑
n=0

1

(n+ 1)!
Re

[(
KN,L,n cos(ϑn − kRFz)

+ iKS,L,n cos(ϕn − kRFz)
)

(x+ iy)n+1

] (5)

From this expression one can derive the kick experienced
by a particle at coordinates (x, y, z) with respect to the ref-

erence particle (Fig. 6):

∆px = −
N∑

n=0

1

n!
Re

[(
KN,L,n cos(ϑn − kRFz)

+ iKS,L,n cos(ϕn − kRFz)
)

(x + iy)n
]

∆py =
N∑

n=0

1

n!
Im

[(
KN,L,n cos(ϑn − kRFz)

+ iKS,L,n cos(ϕn − kRFz)
)

(x + iy)n
]

∆pz =
qVRF

psc
sin(ϑRF − kRFz)

−kRF

N∑
n=0

1

(n + 1)!
Re

[(
KN,L,n sin(ϑn − kRFz)

+ iKS,L,n sin(ϕn − kRFz)
)

(x + iy)n+1

]

(6)

Implementation A new thin element RFMULTIPOLE
has been added to the Twiss and Track modules of MAD-
X. This command accepts all the attributes of the ex-
isting command MULTIPOLE (i.e. L, LRAD, TILT, KNL,

KSL), augmented with the quantities inherited from an RF
element (i.e. RMF XXX parameters), plus the normal and
skew phases arrays PNL and PSL specific to this element.
The syntax of the command to create a RF-Multipole is [8]:

RFMULTIPOLE,

L=real, LRAD=real, TILT=real,

RFM_VOLT=real, RFM_LAG=real,

RFM_HARMON=integer, RFM_FREQ=real,

KNL = { knl0, knl1, ... }, ! Normal amplitudes

KSL = { ksl0, ksl1, ... }, ! Skew amplitudes

PNL = { pnl0, pnl1, ... }, ! Normal phases [2pi]

PSL = { psl0, psl1, ... }; ! Skew phases [2pi]

Export to SixTrack For the tracking needs of the
LHC, the SixTrack code is routinely used [18]. The data
loaded for simulations are provided by the MAD-X inter-
face, which has been extended to export the RF-Multipoles.
SixTrack currently accepts only quadrupoles, sextupoles,
and octupoles, the dipoles being exported as a crab-cavity
element. Therefore, a RF-Multipole in MAD-X is con-
verted into and up to three equivalent thin elements in Six-
Track and higher order terms are discarded. Simulations
of RF-Multipoles associated to crab-cavities will be started
soon for LHC upgrade studies.

Intrabeam Scattering (Ticket #103)

The main improvement to the IBS implementation in
MAD-X was to add the missing terms 6β2

xφ
2
x/(Hxεx) and

6β2
xβyφ

2
x/(Hxεxεy) in the expressions for ax and bx [19].

There were also some other minor issues; the dispersion
in the MAD-X Twiss table is defined as ∆x/(β∆δ) with
β = v/c, which differs from the standard convention
for β smaller than 1. We also now distinguish the r.m.s.
relative energy spread ∆Erms/E from the r.m.s. rela-
tive momentum spread, δrms according to σδ ≡ δrms =
(∆Erms/E)/β2.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

215 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Nonlinear Lenses (Ticket #105)

The new NLLENS element models a thin nonlinear lens
with the magnetic potential of ’Elliptic’ type as specified
in [20]. The lens is used to create fully integrable 2D
nonlinear accelerator lattice with very large nonlinear tune
spread/shift. The NLLENS element is recognized by the thin
tracking module of MAD-X and the quadrupole term of the
potential is included in the transport map computation and
effects the calculation of tunes and Twiss functions.

PTC Beam-beam Element (Ticket #167)

The beam-beam element of PTC was recently connected
to the equivalent MAD-X element to study single-particle
source of beam losses during the squeeze of the LHC
beams. The connection and the physics of the beam-beam
element of PTC are undergoing validation and the scripts
will be used to setup the test suite.

PHYSICS IMPROVEMENT

Motivation
Particle accelerator optics codes [4, 5], including MAD-

X, are routinely used by physicists to perform the following
tasks:

1. definition: define or modify machine parameters us-
ing the MAD language.

2. tacking: track particles or maps to find periodic,
quasi-periodic or constrained solutions, i.e. one-turn
map and closed orbit7.

3. analysis: compute optics functions for the one-turn
map, use normal forms for high-order terms.

4. optimization: optimize the design with user-defined
constraints, e.g. interaction regions matching.

5. validation: perform single-particle tracking cam-
paign to validate the design, e.g. check the dynamic
aperture.

where each step frequently includes iterations over the pre-
ceding steps.

Step 1 is mainly related to the scripting language and its
interpreter, as well as the management of the data structures
representing the machine layout; this important aspect will
be discussed in the next section. Steps 2 and 4 are the heart
of MAD-X and may include extra matching procedures to
find fixed points of transfer maps between boundary condi-
tions or periodic conditions (i.e. closed orbit). Step 3 is the
difficult part for the physicists, because the obtained results
depend on the choice and the parameters of the integra-
tors selected in step 2; this is where PTC excels and offers
many options. Finally, step 5 is the validation of long-term
model behavior through massive tracking, like for example
dynamic aperture studies. Actually MAD-X is not really

7In the following of this paper, we denote for convenience the one-turn
map as the composition of the transfer maps between two boundaries and
the closed orbit as the fixed point of the one-turn map.

efficient for this kind of task and export the lattice attributes
to SixTrack, which is better suited for massive tracking.

The main problem encountered by MAD-X users with
the physics concerns the discrepancy between the mod-
els of the machine elements used by the different inte-
grators. To quote L. Nadolski [5], “the amazing discrep-
ancy between codes has its origin mainly in the integra-
tor scheme”. In practice, MAD-X contains many tracking
codes and gathers somehow most of the problems of con-
sistency.

Modeling the Lattice

Track The Track module is a single-particle 6D drift-
kick-drift symplectic integrator, which accepts only thin el-
ements sliced by the Makethin module. The fixed point
(i.e. closed orbit) is computed by a 6D Newton approxima-
tion. Track has symplectic integrators for drift, multipole,
cavity, and few other special elements like solenoid and
orbit corrector, as well as recently added elements. The
splitting method of Makethin uses equidistant slices for all
thick elements (e.g. dipoles, quadrupoles, sextupoles, oc-
tupoles, etc.) if the number of slices requested is greater
than 4, otherwise it uses the TEAPOT placements and co-
efficients [21]. This method is based on the matching of the
sine and cosine trajectories at their respective focal points
between the thick and the thin representations of the same
quadrupole, minimizing the error for the first order approx-
imation. This gives the positions and the strength frac-
tion of each slice relative to the thick quadrupole center
and integrated strength. This geometrical method builds in
practice a 2nd order symplectic integrator as noted in [22],
which is then applied indifferently to all kind of thick ele-
ments.

Twiss The Twiss module is an almost-symplectic 4D
matrix-kick-matrix integrator used to track the linear terms
of the transfer maps in 6D, and performs optical functions
analysis from the Jacobian matrixR (1st order) and the ten-
sor T (2nd order). Twiss uses a simplectification procedure
described in [23] to restore the symplecticity of R after
each element if the deviation becomes significant. It must
be noted that (Six)Track and Twiss use different element
models and methods to find the reference orbit, and that
Twiss uses the lattice as-defined, treating thick elements
directly. This means that to make the two different ma-
chine representations and models behavior equivalent be-
tween thin and thick, the users have to match some param-
eters (e.g. beta functions) between the two lattice models
using knobs (e.g. quadrupoles strengths). Once the conver-
gence is achieved, the (Six)Track simulations can be run
on the almost equivalent model from Twiss. This manual
procedure is somehow painful and time consuming during
complex process where the matching must be performed
iteratively; as for example during the squeeze that occurs
simultaneously at all the interaction regions, in particular
IR1 and IR5, before the two beams enter into collision in

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

216C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

the LHC.

PTC The PTC library embedded into MAD-X pro-
vides symplectic integrators for the naive 2nd order method,
the Ruth-Neri-Yoshida 4th order method and the Yoshida
6th order method [24]. It supports the drift-kick-drift,
matrix-kick-matrix and delta-matrix-kick-matrix models.
The latter has been introduced for speed and compatibility
with the SixTrack8 application. PTC handles exact as well
as expanded version, i.e. for the square root, of the Hamil-
tonians. The number of integration steps (slices) NST of
the splitting model is specified by the user. But if the RE-
SPLIT flag is provided, NST is scaled by the integrated
focusing strength KL divided by the parameter THIN for
quadrupoles, or XBEND for dipoles. The order of the inte-
grator is selected by the two values of the parameter LIM
according to the rules:

• LIM1 ≥KL/THIN : 2nd order
• LIM2 ≥KL/THIN > LIM1 : 4th order
• KL/THIN > LIM2 : 6th order

This splitting scheme makes the final layout quite different
from the layout created by the Makethin module or treated
by the Twiss module. Hence, the aforementioned discrep-
ancy between the integrator models becomes prominent
because the communication between MAD-X and PTC in
only one-way; results computed by PTC cannot be reused
directly by MAD-X for the time being.

The study [25] makes a detailed comparison of the trans-
fer maps computed by PTC and by Twiss for a single dipole
magnet (SBEND and RBEND) under various conditions
and inputs. The main discrepancies observed are relative
to the variations in ∆p/p for off-momentum beams with
px(0) 6= 0, and to the 6th canonical variable pt, which is al-
ways zero in Twiss (Twiss is 4D). Hence, PTC and MAD-X
outputs do not match even when tracking through a single
element.

Symplectic Integrators
The Fig. 7 schematizes the process used to derive sym-

plectic integrators, i.e. geometric integrators that preserve
symplectic structures, from the Lorentz forces induced by
magnets and RF-cavities in charged particles accelerator.
The “danger” icons mark boxes resulting from integration
steps where approximations are usually needed to solve the
differential equations of the previous level. In this paper we
are mainly interested by the second integration step involv-
ing the construction of symplectic integrators that solve the
motion equations. When the Hamiltonian is not integrable
directly (right branch in Fig. 7), one can either (1) find an
approximate solution to the exact Hamiltonian, (2) find an
exact solution to an approximate Hamiltonian, or (3) model
the potentials and energies such that the obtained Hamilto-
nian becomes integrable (i.e. upward arrow) as in the RF-
Multipole example.

8SixTrack is a matrix-kick-matrix code, this mode is also an extension.

potentials,
energies

Lorentz
force

Lagrangian

Legendre
transform

stationary action
principle

Hamiltonian

Maxwell
equations

Hamilton
equations

time
independent

motion
equations

integrable

transfer
maps

perturbation
theory

canonical
transforms

KAM theorem

particles
tracking

maps
tracking

beam
dynamics

one-turn
map

optics
functions

normal forms

Lie algebra

Figure 7: Schematic process to construct symplectic inte-
grators (red box) and their application to particles beam
optics. The danger icons mark integration steps where ap-
proximations may occur to solve the differential equations.

Implicit integrators The former approach (1) is used
to construct implicit integrators (numerical integrators) de-
veloped to solve large class of motion equations, typically
the class derived from time-independent Hamiltonian that
expressed the total energy of the system as the sum of the
potential and the kinetic energies.

These integrators do not preserve the phase space sym-
plectic structure of the canonical variables (q,p); the 2n-
form dp∧dq ≡ {, }, i.e. the Poisson brackets, does not pre-
serve the volumes [26] p. 204-207. In other words, they do
not preserve the first integral invariant (i.e. incompressibil-
ity) of the Hamiltonian flow {, H} (Liouville’s theorem),
at the heart of the stationary action principle. Such implicit
integrators let the error of the total energy of the system
grow secularly, i.e. diverging spirals appear on the Poincaré
sections of the phase space. The map of such integrator
does not describe the motion in an Hamiltonian system.

However, the long-term behavior can be kept under con-
trol by using backward error analysis and averaging trans-
formations to make the system time-reversible (i.e. inte-
grable) and restore the near-preservation of the symplec-
ticity [27] (ch. XII). Nevertheless, these methods are not
recommended in [22] by E. Forest, the author of PTC.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

217 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Explicit integrators The second approach (2) is used
to construct symplectic integrators (i.e. transfer maps) that
give exact solutions for a perturbed Hamiltonian admit-
tedly close to the original Hamiltonian, with the guarantee
that there is no secular trend in the error of the total energy
caused by truncation error. This latter statement does not
prevent symplectic integrator to be inaccurate, and yet very
stable and precise. Their practical interest lies in the fact
that many physical systems are perturbations of integrable
systems.

A non-integrable Hamiltonian H can be seen, under
regular conditions specified by the Kolmogorov-Arnold-
Moser theorem, as the perturbed version of and integrable
systems H̃ = H − δH . Various methods and formu-
lae are provided by the perturbation theory to find the ap-
propriate generating functions and canonical transforma-
tions that formulate the Hamiltonian on a different config-
uration space and exhibit properties — stabilization, sep-
aration, cancellation, invariance, etc. — useful to sim-
plify and solve the problem. In particular, the Baker-
Campbell-Hausdorff formula is very useful to split, elim-
inate (the perturbative terms to some order), and combine
non-commutative maps while preserving the symplectic
structure of the system, as in the construction of high-order
symplectic integrators [24].

There is no fundamental difference between slicing an
element and splitting its Hamiltonian into integrable parts.
In both cases, the goal is to build the maps of a symplec-
tic integrator that solve the motion equations in that ele-
ment. With the exception that geometric interpretation of
the resulting high-order maps may leads to negative drifts,
somehow unphysical.

Tracking Maps

In practice, the order of a symplectic integrator is given
by the order of the error of its maps in term of the indepen-
dent variable between the exact and the perturbed Hamil-
tonians. To model the transfer map of a single element or
a fraction of this element, i.e. a slice, 2nd, 4th or 6th or-
der symplectic integrators are generally accurate enough
for particles tracking. But to model a full one-turn map
M = Mn ◦ · · · ◦M2 ◦M1, one needs higher orders.

The solution is to track truncated power series (i.e. Tay-
lor maps) that approximate the complete composition up
to some defined higher orders. The truncation breaks the
symplecticity of the one-turn map, but it can be compu-
tationally restored using the same methods used to con-
struct symplectic integrators. The error of the deviation
will be anyway of higher order than the order of the trun-
cated power series [22].

The PTC library embedded into MAD-X is able to track
any order of maps. The order is fixed by the users and de-
pends on the non-linearities supposedly present in the lat-
tice, the off-axis off-momentum initial conditions of the
simulations, and the order of the analysis that follows,
i.e. bottom right branch in Fig. 7. Because the time of

the computation grows exponentially with the order of the
maps, some tradeoff must be found to avoid lengthy track-
ing time, e.g. days or weeks for large lattice and 10th order.

As a comparison, Track is a 0-order map symplectic
tracking code (particles orbits) and Twiss is a 2nd-order
map non-symplectic tracking code (orbit, R and T), both
being used with some success at CERN. Hence, symplecti-
fied high order maps are adapted to model accurately one-
turn maps for further analysis and to some extend per-
form short-time tracking, while symplectic 0-order maps
are adapted for long-time tracking. Both kinds of maps are
handled indifferently by PTC on the same lattice model,
making PTC the only valid and unified approach for com-
plex lattices. Unfortunately, PTC is slow comparing to
(Six)Track and Twiss, even when processing with same
maps order, because of its very flexible splitting model as
shown in [28]. As for most components of the application,
some room exists for improvement.

Matching Methods

Figure 8 shows the general principle of the matching
module available in MAD-X. The optimization algorithm
searches for a global minimum of the figure of merit F . If
such a minimum is reached within the tolerances, the it-
erative process considers the problem as being solved and
stops. Otherwise it updates its new position in the problem
state space C (i.e. user variables), and starts a new itera-
tion. This optimization process follows a trajectory into the
state space, which depends on the properties of the figure
of merit F and the nature of the problem to solve; differ-
ent algorithms follow different trajectories. The figure of
merit is a cost function part of the optimization algorithm,
which combines the user-defined penalty functions to be
minimized and the constraints on the solution domain, both
defining the nature of the problem:

• local — global
• linear — quadratic — non-linear
• continuous — discrete
• smooth — irregular
• unconstrained — constrained
• constrained by equality — inequality

For a complete description of the various algorithms avail-
able for each combination of these criteria see [29]. In our
case, we give a particular interest to the subclass of global,
non-linear, continuous, smooth and constrained problems
with both equalities and inequalities. This subclass is rel-
evant to systems described by the Hamiltonians modeling
lattice elements and to the usage made of the MATCH com-
mand. The algorithms actually available in MAD-X do not
fall into this subcategory as we will see.

Simplex The Simplex minimization is an active set
method (i.e. the algorithm class) well suited for linear pro-
gramming (i.e. problem class), that performs well to solve
linear problems with inequality constraints. Its strength lies

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

218C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

tolerances

constraints
state space

C

optimization
calculation

weights

initial
conditions

evaluate
F

lattice code
calculation

contexts

Figure 8: Optimization principle, the red boxes are the key
components of the matching optimization process.

in its capacity to detect active constraints at the solution. In
practice, it does not work well on the class of problems of
interest to MAD-X users, because the features that make it
so attractive for linear programming vanish in the presence
of non-linearities.

Gradient The LMDIF and MIGRAD minimization
are based on gradient descent method using different func-
tions of merit. These are the simplest and fastest meth-
ods available in MAD-X, but they require more evaluations
than other methods and get easily trapped by local minima,
with no user-defined criteria to avoid the problem.

Newton The Jacobian minimization [30] uses the
Newton algorithm and was added to deal with over-
determined or under-determined problems that other meth-
ods were not addressing, using respectively QR or LQ de-
compositions. But this algorithm as well as the two previ-
ous ones are not supposed to deal with constraints and spe-
cial tricks have been setup to bound the search in the state
space and eliminate (freeze) non-active constraints. If the
procedure fails, the user has to put extra weights to control
the algorithms when it approaches the boundaries.

The implementation of this command was also the occa-
sion to provide a more flexible way to define the constraints
and act on the knobs with the help of the VARY command
and some MAD macros. This is an important method-
ological aspect of the way the MATCH command might
be used; some users like commands on which they get fine
control. This approach works in practice because users’
knowledge of beam dynamics generally let them start with
good guesses and use the algorithm for fine-tuning of the
expected results.

New methods On the long term, we propose to add
two new methods better suited to manage large-scale non-
linear problems (lattice knobs!) with large set of con-
straints all together. They are based on the Augmented La-
grangian methods to handle equality and non-equality con-

straints in a uniform well-defined framework. With these
forefront methods in hands, MAD-X users should be able
to work on complex large-scale problems efficiently.

The active-set sequential quadratic programming (SQP)
method corresponds to the general purpose of the MATCH
command where the problem is smooth and well defined,
and where the inequality constraints specify soft bound-
aries of the solution domain, that is penalty functions can
be evaluated beyond during the optimization steps. This al-
gorithm should not trouble the users understanding since it
is in the line of the Gradient and Newton methods, except
that it works on the Hessian of the augmented Lagrangian
quadratic form. The active set qualifier means that it pos-
sesses the same ability as the Simplex to select effectively
the active constraints, a combinatorial problem, meaning
that even large set of constraints can be handled efficiently.

The interior point with log-barrier method is the com-
plementary approach of the active-set SQP essential to han-
dle problems where the inequality constraints define strong
barriers on the solution domain, i.e. user-defined penalty
functions should not be evaluated beyond.

These two methods require evaluating the local Jacobian
and Hessian matrices of the merit function accurately. The
existing methods in MAD-X use inaccurate numerical dif-
ferences to estimate the local derivatives. We propose to
implement or reuse an existing automatic differentiation
module for this purpose.

The computational power required by these new al-
gorithms should remain equivalent to the already imple-
mented ones, because the extra computations required by
the second order derivatives should be compensated by the
quadratic convergence of the algorithms. The development
of this new component could be also the occasion to im-
prove the computations performed by the differential alge-
bra maps during high-order tracking.

Thick Elements (Ticket #113)

This ticket requests to add thick dipole and quadrupole
to the tracking module of MAD-X. This achievement
would avoid extra work currently needed to generate a thin
lens version of the LHC lattice and rematch the optics dur-
ing squeeze simulations. While dipoles and quadrupoles
can be defined as thick elements in the lattice sequence,
they actually have to be sliced to be accepted by the Track
module. The request boils down to re-introduce thick ele-
ments into the Track module as in MAD8, making the code
a mixed drift-kick-drift and matrix-kick-matrix code. Some
care will have to be taken with guards rejecting thick ele-
ments in few places.

The architecture of Track and Twiss modules requires
that transfer matrices have to be entirely recomputed each
time an element is processed, including all the costly tran-
scendental functions, which slow down significantly the
simulation as observed from simulation with SixTrack [31].
In order to avoid this degradation, another flag must be
added to the Makethin module to select precisely the

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

219 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

dipoles and the quadrupoles that must remain thick.

Teapot Slicing (Ticket #154)

This ticket proposes to apply iteratively the TEAPOT
splitting scheme aforementioned until the number N of
user-defined slices for the element is reached. This request
should be technically easy to address, even in the legacy
code and should be implemented soon. Some care will have
to be taken with the memory management of the elements.
For example, this extension could split N linearly leading
to one of the following compositional schemes according
to the remainder {0, 1, 2, 3} of n =

[
N
4

]
respectively:

T
(n)
4 , T3 ◦ T (n−1)

4 ◦ T2, T3 ◦ T (n−1)
4 ◦ T3, T

(n)
4 ◦ T3 (7)

where Tk with k = {2, 3, 4} refers to the already imple-
mented TEAPOT splitting schemes.

As an alternative9, it could possible to extend the
TEAPOT splitting schemes beyond 4 slices to keep the ac-
curacy of the underlying 2nd order symplectic integrator.
For examples, first estimates on T8 show that it should im-
prove the error by approximately a factor 2.2 with respect
to a T 2

4 scheme, in the line of T4 that improves T 2
2 approxi-

mately by a factor 2.5. With the Yoshida methods [24] and
8 steps, it is possible to construct a 6th order symplectic in-
tegrator but containing negative drifts that MAD-X is not
able to handle for the time being. An issue that might be
useful to solve if we like to extend the range of application
of MAD-X to small or special accelerator lattices.

Symplecticity Checks (Ticket #172)

This ticket proposes to add symplecticity checks into
MAD-X. In fact, these checks are already present in Twiss
for the matrix R and could be improved to include the ten-
sor T . The same checks could be added to Track to evaluate
the precision and the stability of the calculations in debug
mode, because Track is already symplectic.

Lattice Transformation
This ticket proposes to implement a lattice reflector to

get rid of the problem of consistency between the beam
direction flag bv, the beam 2, and the beam 4 inside MAD-
X in order to simplify the LHC simulations. The details of
the transformation are given in [32] and the implementation
cost in the legacy code will be carefully studied to evaluate
if it is not better to wait after the redesign of the core, which
should be able to process complex 3D lattice topologies in
line with PTC.

Other Plans
Benchmarks MAD-X users observed unexpected dif-

ferences or inconsistencies in their results from time to
time. While the origins are sometime the misunderstand-
ing of correct usage, often due to the abstruseness or the

9Not part of the request ticket #154.

incompleteness of the documentation, some of these feed-
backs are valid complaints. Therefore, further studies like
in [25] should be performed on other single-element mod-
els as well as on small reference lattices in order to evaluate
the impact of parameters changes. Special considerations
should be addressed for:

• small p0c,
• large ∆p/p,
• large aperture A versus integrated field strength KL,
• transverse offsets off-axis (x0, y0) and off-momentum

(px0, py0) vs small length L and small radius ρ.

These points should quantify the validity of the approxi-
mations made in the models, like the small angle approx-
imation, the error in series truncation and the radius of
convergence of the series. An application like MAD-X
should work for any value of the particle kinetic energy p0c,
i.e. 0 < β ≤ 1, and any combination of (x0, px0, y0, py0),
A, L, KL, and proper ratio of transverse and longitudinal
momentum.

This benchmark might be very useful to quantify the
discrepancies between MAD-X and PTC when modeling
small or special accelerators (e.g. Fixed-Field Alternat-
ing Gradient) studied at CERN where approximations are
mostly noticeable [33]. Moreover, the conclusions could
be used to draw some recommendations for the users and
improve the application in that direction. On the long-term,
the best strategy would be to merge these three components
into a well-tested single one, most probably following the
more flexible and accurate approach of PTC. Then the im-
provements would mainly consist to speed-up the PTC ap-
proach.

Manuals and guides The actual online documentation
of MAD-X [8] has grown untidily with time, and the ini-
tial structure inherited from the MAD8 user’s manual has
not been preserved. The current table of content does not
reflect the application logic, and users often prefer search-
ing the information in the subject index first. The look and
feel of the user’s manual is under improvement but the re-
structuring of the document and the correction of the in-
consistency is a long-term objective. In parallel, a new
physics guide will be started on the model of the MAD8
physics guide, and extended to take into account the evo-
lution of MAD-X. In particular, the Hamiltonians used in
Track, Twiss and PTC for each element should be collected
and carefully described with their respective assumptions
and limitations. This task will go in concert with the bench-
marks aforementioned to identify the approximation done
by the models and the recommendations that should follow.

APPLICATION IMPROVEMENT
Motivation

In the section on project improvement, we have men-
tioned the untidy feeling perceived by the MAD-X users.

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

220C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

Table 1: Classification of MAD-X users complaints that
turned out to be problematic for their studies, 77% of the
tickets are related to the core of the application, 23% to the
physics.

Groups # Tickets no
interpreter 14 56, 57, 64, 67, 73, 89, 109, 110,

124, 125, 132, 136, 147, 165, 171
table, select 10 48, 81, 85, 99, 122, 123, 130, 139,

141, 148
sequence, use 7 61, 74, 80, 89, 93, 120, 126
plots 12 42, 69, 71, 76, 85, 86, 102, 115,

116, 131, 150, 164
memory leaks 7 1, 3, 4, 92, 111, 151, 153
MAD-X physics 13 68, 77, 79, 83, 88, 106, 112, 117,

127, 135, 137, 138, 149
PTC physics 2 75, 118

Table 1 classifies the meaningful complaints of the users
to spot the problematic parts of the application. The com-
plaints relative to the core of the application (non-physics
groups) represent 77% of the total, making this part of the
application a priority for improvement, while the physics
part (two last groups) represents only 23% of the total. In
the following, we will address few of these points and make
proposals to improve directly or indirectly the situation.

Data Management

Memory leaks Memory leaks appear in many occa-
sions in MAD-X; each time a table, macro, file inclusion
(i.e. call file), command, class or element are created, some
memory leaks happen. The three latter points are equiv-
alent in practice because classes and elements are repre-
sented as commands internally10. The problem becomes
rapidly critical for the jobs that intermix macros and loops
to create long sequences.

Data sharing The design of the application was in-
tended to run “one-shot” jobs, where allocated memory is
never reclaimed except by the operating system when the
process quits. The later introduction of macros has changed
the big picture, and real cases leaking up to 7 MB/s have
been observed (ticket #111). These leaks cannot be cured
in the present design because there is no ownership policy,
that is the number of references sharing the same object is
unknown, making these bugs undecidable.

Data lookup The situation is complex because all
searches are based on plain strings comparison, a notori-
ously slow process which is also required to retrieve ele-
ments and beam parameters at each tracking step in Track
and Twiss. To improve the performance, the core cashes a
lot of information through pointers and indexes into large
data structures and global variables (i.e. side effects) that

10An interesting design choice that will be preserved.

lexer parser

compile

symbols

lines tokens

AST code

contexts

istream

eval

effects

Figure 9: Components of the future interpreter, split into
the analyzer (left to AST) and the evaluator (right to AST).

must be manually updated upon changes. Another strat-
egy adopted was to enforce constraints when defining new
elements or data structures, like constant offsets for spe-
cific fields within structures, or hardcoded indexes to access
properties stored as key-value pairs (ticket #57). These two
optimizations are very error prone and make the manage-
ment of data structures intrusive and very complicated.

Side effects In many cases, the only available solu-
tion to recover from undetermined state of global vari-
ables and side-effects between modules interaction is to
destroy and to recompute everything; a well known user
trick used to reload sequence or call USE and TWISS com-
mands for arbitrary reasons, hoping to restore a proper lat-
tice (ticket #80).

Interpreter Design

A deep analysis of the situation highlighted that most
design problems were coming from the development of the
interpreter itself. The interpreter is not following a well-
defined syntax and grammar, and the implementation grew
from timely requests with little cohesion, introducing in-
consistent constructions in the language.

No parser The analyzer part of the interpreter is
string-based, with no lexer, no parser and no abstract syn-
tax tree (AST), which are essential components of any in-
terpreter, i.e. Fig. 9. As a consequence, the interpreter is
spread over the entire code and processes only strings. A
strategy that conditioned all further developments down to
the physics computations. The slow performance of plain
strings comparison generated plenty design decisions that
did not scaled with the size of the core, with a strong impact
on the complexity, performance and support of the applica-
tion.

Ambiguous grammar There are many examples,
i.e. Tab. 1, which create grammar issues that remain un-
detected by the analyzer. The commutative positional ar-
guments of the TABLE command are at the origin of some
tricks in the code and painful bugs for users. The column

argument in SELECT that collects an undelimited list of
names and therefore needs to know the names of the for-
mal parameters to detect the end of the list. The unquoted

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

221 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

strings converted to sequence of “tokens” but still inter-
preted as lowercase strings, making the scripts platform
dependent (e.g. file names). The extra comma in a TWISS
command that cancels silently its invocation, leaving the
previous Twiss table in place as if it was called, i.e. thanks
to global variables and side effects. The use of unrecog-
nized operator (e.g. ** instead of ^) that makes expressions
returning zero silently. The extra space before (or after)
some operators (e.g. ->) that breaks silently the expression
evaluation leaving unchanged the value in assignment. The
missing statement delimiter ; silently ignored, leading to
concatenation of statements and strange behaviors experi-
enced by most users.

The list is long but each of these points (and more) were
reported by users, after having wasted hours if not days to
figure out the problem11, with a real cost for their projects.

Interpreter redesign We propose to redesign the in-
terpreter, which is the cornerstone of the creation and man-
agement of most data structures, following the standard
structure of interpreters schematically shown in the Fig. 9.
The components will be developed step by step and intro-
duced into the legacy code for portability check, testing and
debugging purpose. The parser will be a recursive descent
parser for its simplicity and flexibility and because utterly
performances are not needed at this level. Moreover, it
will allow parsing context dependent grammar required for
backward compatibility with the MAD language that we do
not want to leave out. The code will be activated once the
interpreter is ready for use, and all modules adapted to its
standard interface. For further details about parsing tech-
nics and interpreter implementation, see [34, 35].

The language syntax will keep almost full backward
compatibility because many users are familiar with it, and
like its compactness and flexibility; except for the cases
aforementioned that make the grammar ambiguous or con-
text dependent.

Application Logic
We mentioned that the design and the implementation of

the interpreter has driven all MAD-X development during
a decade. For the same reason, the development of a new
well designed interpreter, i.e. Fig. 9, will improve all as-
pects of the application by introducing few concepts miss-
ing in MAD-X. We describe hereafter four concepts that
we plan to introduce in the code and the implications for
the application logic as shown in Fig. 10.

Ownership policy We propose to introduce intrusive
manual reference counting with ownership semantic in all
objects, i.e. data structures. This semantic has been defined
and implemented in the Objective-C language and used
with success by the software industry for two decades [36].
This will simplify the memory management drastically and
should remove the undecidability of all pending memory

11Many thanks to all MAD-X users for their fruitful feedbacks.

leaks. This policy will be an integral part of the new inter-
preter, because all user objects declared in the scripts must
be built by the parser and held by the nodes of the AST.
Hence the new interpreter will be the first claimant for the
ownership policy; variables, elements, sequences and ta-
bles being the next.

Runtime polymorphism A direct consequence of
building an AST, is that runtime polymorphism must be
supported. Indeed, the type of the nodes in an AST are
known only at runtime and need polymorphic interfaces
with late binding to be used or evaluated. This feature is
already present in C++, easy to implement in C, and te-
dious to simulate in Fortran 95.

Contexts and scopes Contexts and scopes are impor-
tant concepts of programming languages. A scope defines
the validity and visibility of variables and identifiers, and is
delimited by brackets pairs. Variables are bound to values
within the scope where they are created and are destroyed
on exit. A context includes the current scope and all en-
closing scopes. Only variables that are part of the current
context are visible, i.e. can be used. To create local vari-
ables bound to the current scope, we propose to introduce
the keyword var and extend the semantic of const with
the usual semantics borrowed from most programming lan-
guages.

Notification policy The last concept that we propose
to introduce is the notification policy, which consists to
notify registered objects about specific changes or actions
through well-defined polymorphic interfaces. This will
help to update the values of variables, expressions, ele-
ments, sequences, etc. consistently and only on-need. It
will also help to implicitly manage the requirements of
some computations, i.e. data and modules interdependen-
cies.

Polymorphic variables With the introduction of run-
time polymorphism, variables will be able to hold and deal
with any kind of objects through properly defined poly-
morphic interfaces. Currently MAD-X is limited to deal
with boolean values, integer numbers, floating point num-
bers, strings and expressions thereof. The evaluator (right
in Fig. 9) will become polymorphic too, with the ability to
evaluate any kind of objects and expressions.

Polymorphic containers By extension to variables,
arrays and associative arrays will inherit for free of the
same features and will be able to hold and deal with any
kind of objects or group of objects. By composition, a
variable will be able to store an array or table containing
various kinds of elements, or an entire lattice definitions.
This improvement will allow to get rid of all the global
variables and most side effects present in MAD-X. Tables,
sequences, files, commands, etc. will be stored in system-
defined or user-defined variables, and these variables will

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

222C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

ownership
policy

runtime
polymorphism

scope &
context

memory leaks

reentrancy

functional

flexibility

side effects

Concepts Improvements

performances

consistencynotification
policy

Figure 10: Schematic impact of concepts on the application
logic and performance.

be passed as arguments to commands. This will restore the
functional programming capability missing in the scripts.

The purpose of the simple twiss example hereafter is
to show how hierarchical objects can be built and stored
into variables and passed to the command, highlighting the
future uniform data management:

file = file="optics";

pattern = pattern="^m.*";

column = column={name,s,betx,bety};

sector_sel = sectormap=pattern;

twiss_sel = select={pattern,column};

twiss (file, twiss_sel, sector_sel);

The second equal sign in the first five lines does not per-
form an assignment, but returns a key-value pair object,
which in turn is assigned to a variable. The brackets are
used to group expressions into a polymorphic array. The
parenthesis of the twiss invocation means “evaluate in the
current context augmented by these variables”, i.e. the ar-
guments. This syntax is equivalent to the first comma or
space following the command name currently supported,
but with a less ambiguous notation. Without going into the
details, this approach standardizes the way variables, ele-
ments, sequences, commands, etc. are handled internally,
with a deep simplification of the MAD-X core.

Types extensions Since the evaluator will handle poly-
morphic expressions everywhere12, the language can be ex-
tended very easily to new types useful to the users. Needs
have been identified for complex numbers, vectors, matri-
ces and functions, and more may be added later painlessly.

12Currently expressions are only allowed in limited places.

But for the sack of simplicity, the scripting language should
be kept as simple as possible, with a syntax yet far enough
expressive for all needs of MAD-X users.

Sequences The following example is coming from a
user request and shows an application of functional syntax
to embedding sequences into other sequence:

seq := sequence (L=len) {

...

subseq1: seq1, at=at1;

subseq2: seq2, at=at2;

...

}

seq1 := sequence (L=len1) { ... }

seq2 := sequence (L=len2) { ... }

For backward compatibility of scripts, all current notations
will be supported, but the new notation reflects again the
uniform treatment of the information by the new inter-
preter.

The possibility to define subsequences of lattices stored
in variables with notification of changes will allow the
users to change the lattice definitions on-the-fly through the
knobs of the optimization process, and avoid to rebuild the
entire beam-line with costly macros at each iteration of the
matching, i.e. Fig. 8 bottom red box.

Matching reentrancy A very positive consequence of
the support of functional programming style is that it will
allow reentrancy of commands. The reentrancy of the
MATCH command is a strong user request to optimize
large complex optics, e.g. interaction regions of the LHC,
that need to be split into few steps to converge. This split-
ting method called state space partitioning, makes the op-
timization algorithms more efficient and stable.

Data Visualisation

Data visualization is an important topic for MAD-X
users. As for any numerical intensive application, visualiz-
ing data is important to quickly check the validity of the re-
sults. But this is also a very time consuming programming
task that cannot be addressed directly within the MAD-X
project due to the limited resource. Hence, the proposed
strategy for the PLOT command is to delegate the task to
third party portable application, like Gnuplot [37]. The in-
terface already exists but is actually underexploited, that is
only used for 2D phase-space tracking plots (i.e. trackfile),
while other kinds of plots relies on old unmaintained codes
written in Fortran 77.

With the notification policy aforementioned, it will be
possible to update the plots on-the-fly upon changes, e.g.
Twiss table content during matching. If important limita-
tions not compatible with MAD-X objectives are encoun-
tered, the possibility to use a portable library will be studied
in the last resort, but the amount of work to support such
strategy is significantly larger.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

223 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Speed Performance
Tracking Software speed is a strong point for the com-

munity of users, but the complexity of MAD-X forbids
serious optimization. As a consequence many parts of
the code waste CPU cycles. The old programming style
based on cascades of if-then-else (up to few tens per
function) breaks frequently the instruction prefetching of
pipelines, which is a performance killer on modern CPU.
With the new core design, the transfer maps will be stored
in the beam-lines nodes (i.e. fibers in PTC) with the ele-
ment attributes. Hence, Twiss and Track should experience
a significant speed-up by a factor of about 4 and 4×#cpu-
core respectively. As for reentrancy, the absence of global
variables and side effects is mandatory to go with parallel
computation on multi-core CPUs. The replacement of all
identifier strings by symbols within the lexer, i.e. Fig. 9,
should also have a significant speed-up on modules that re-
lies on lattice parameters.

Interpreter One of the main drawbacks of introduc-
ing runtime polymorphism in high performance computing
is the substantial loss of performance. Few programming
techniques have been tested in C and C++ to overcome
the limitations induced by runtime polymorphism. First
attempts to test the performance of the main loop of the
evaluator, i.e. Fig. 9, have shown that the choice of the tech-
nologies (not discussed in this paper) allows to implement
an extremely fast polymorphic evaluator about ×8 – ×10
faster than the mainstream interpreters, e.g. Python. For
example the simple loop while(1) x=x+1; is evaluated
1.67 108 times by a single core of an Intel i5 2.3 GHz
CPU, where x is dynamically typed as an integer and all
operations are performed through polymorphic interfaces.
Hence this test is a direct measure of the performance of the
evaluator without cheating with built-in calls to C libraries.
If these performances are confirmed on the large scale, this
evaluator will offer tremendous opportunities to the MAD-
X users and should deeply change the way elements and
lattices might be parameterized and optimized.

Math kernel Another important aspect of the future
performance of MAD-X is the efficiency the matrix-matrix
and polynomial-polynomial multiplications. The former is
involved in many places, from geometrical transformations
to orbit and linear-term tracking (i.e. R matrix and T ten-
sor). The latter is involved in truncated power series alge-
bra (i.e. high-order maps tracking) and differential algebra.
With the new design, it will be possible to build highly spe-
cialized modules dealing with specific tasks and tuned for
specific platforms and technologies; with a particular in-
terest for the SSE2 and AVX Intel technologies present on
all platforms supported by MAD-X. A first attempt as been
performed to improve the matrix-matrix multiplication us-
ing SSE2 Intrinsics and exploit the topology of the data
structures to vectorize the operations.

The Fig. 11 shows timing comparison in seconds be-
tween three implementations evaluating 108 the matrix ex-

0

50

100

150

200

1 2 3 4 5 6 7 8 9

T
im

e
 s

e
c
o

n
d

s

Size N

Naive - SSE4
Eigen - SSE4
Intrinsics - SSE2

Figure 11: Timings in seconds to compute 108 times the
matrix expressionM = M1M2+M3M4 for small dynamic
matrix sizesN . For static matrix sizesN , Eigen and MAD-
X equals with a ×10 speed-up versus dynamic sizes.

pression M = M1M2 + M3M4, for square matrix with
dynamic sizes N = 1 .. 9. The results for static sizes (i.e.
known at compile time) gives another ×10 improvement
versus dynamics sizes (i.e. known at runtime) for all imple-
mentations, leaving unchanged the performance ratio and
the outcome of the study.

The naive curve shows what C/C++ and Fortran compil-
ers can achieve on the naive handwritten algorithm, with
maximum optimizations enabled including SSE vectoriza-
tion. This is the current performance status of MAD-X.
The C++ Eigen library [38], one of the fastest available
library with Armadillo [39], uses advanced programming
technics like meta-template expressions to optimize the
computations of expressions and avoid temporaries. The
main goal of these C++ libraries is to provide Matlab-like
syntax to programmers using operators overloading, while
performing as well as plain handwritten C and Fortran
code as shown by the Eigen curve. Finally the Intrinsics
curve shows that handwritten code exploiting data struc-
tures topology for vectorization — an optimization beyond
the capability of compilers — can perform at least ×2 bet-
ter than other approaches. This kind of optimization re-
quires moderate efforts because only few functions need to
be optimized, with a significant performance impact on ma-
trix and polynomial operations at the heart of many com-
putations in MAD-X. Estimating the performance improve-
ment for complex computations like Track, Twiss or Match
is premature and further investigations are needed.

CONCLUSIONS AND OUTLOOK

MAD-X is undergoing its first renovation process since
years, a process that is meant to improve the code qual-
ity and flexibility and to restore the communication within
the MAD-X community. Its maintenance and portability
have been simplified and strengthened, and a bug tracking
system has been setup. Some efforts are also devoted to

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

224C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

implement new elements in the legacy code, like the RF-
Multipole necessary to evaluate the detrimental impact of
the crab-cavities on the luminosity in the LHC upgrade sce-
narios. By the end of 2012, MAD-X should be ready to
sustain new large-scale developments for the benefit of its
users.

In parallel to the achievements of the past year, a struc-
tured analysis of the situation and the collected feedback
from the community allowed to draw new orientations for
the future development. In the present paper, we have made
few proposals to deeply improve the application logic and
the physics results and extend MAD-X to a wider range of
uses; taking into account the needs of the future accelera-
tor projects at CERN and the limited resource available to
achieve the work over the next period of 2-3 years.

ACKNOWLEDGMENTS
We would like to thank F. Schmidt for his invaluable con-

tribution to the project as the MAD-X custodian over the
decade 2002–2011, R. De Maria for the many fruitful dis-
cussions on MAD-X, A. Latina for the implementation of
the RF-Multipole, P. Skowronski for his support on PTC,
and M. Giovannozzi and O. Bruning for useful feedbacks
on this paper.

REFERENCES
[1] H. Grote and F. Schmidt, “MAD-X : An Upgrade from

MAD8”, PAC’03, Portland, USA, May 2003.

[2] F. Schmidt, “MAD-X a worthy successor for MAD8?”,
Nucl. Instrum. Methods Phys. Res., A 558, (1) 2006.

[3] E. Forest, F. Schmidt and E. Mcintosh, “Introduction to the
Polymorphic Tracking Code”, KEK Report, 2002.

[4] W. Decking, “Single Particle Beam Dynamics Codes, Care
HHH Workshop, CERN, November 2004.

[5] D. Einfeld, “Optic Codes”, OMCM Workshop, CERN,
June 2011.

[6] K. Fuchsberger, X. Buffat, Y.I. Levinsen and G.J. Muller
“Status of JMAD, The Java-API for MAD-X”, IPAC’11, San
Sebastian, Spain, September 2011.

[7] G.J. Muller, et al., “Toolchain for Online Modeling of the
LHC”, ICALEPCS’11, Grenoble, 2011.

[8] MAD-X website http://cern.ch/madx

[9] A.H. Watson Thomas and J. McCabe, Structured Testing: A
Testing Methodology Using the Cyclomatic Complexity Met-
ric, NIST Special Publication 500-235, 1996.

[10] J. van Gurp, and J. Bosch, Design, Implementation and Evo-
lution of Object-Oriented Frameworks: Concepts & Guide-
lines, Software Practice & Experience, John Wiley & Sons,
March 2001.

[11] MAD-X Trac https://svnweb.cern.ch/trac/madx

[12] E. Forest, et al., “Synopsis of the PTC and ORBIT Integra-
tion”, KEK Report, 2008.

[13] L. Deniau, “MAD-X meeting”, presentation available on [8],
CERN, June 2012.

[14] L. Deniau, and A. Latina, “Evoluation of MAD-X in the
framework of LHC upgrade studies”, IPAC’12, New Or-
leans, May 2012 (MOPPC074).

[15] A. Grudiev, et al., “Study of Multipolar RF Kicks from the
Main Deflecting Mode in Compact Crab Cavities for LHC”,
IPAC’12, New Orleans, May 2012 (TUPPR027).

[16] S. Russenschuck, “Field Computation for Accelerator Mag-
nets”, Wiley-VCH Verlag, Weinheim, 2010.

[17] R. De Maria, “Symplectic integrator for a relativistic
particle in a RF cavity”, BE/ABP–LCU meeting, http://
cern.ch/ab-dep-abp/LCU/LCU meetings/Minutes.html,
April 2011.

[18] F. Schmidt, “SixTrack version 1.2”, CERN-SL-94-56, 1994.

[19] F. Antoniou and F. Zimmermann, “Revision of IBS with
Non-Ultrarelativistic Corrections and Vertical Dispersion
for MAD-X”, Report CERN-ATS-2012-066, March 2012.

[20] A. Valishev et al., “Ring for Test of Nonlinear Integrable
Optics”, IPAC’12, New Orleans, May 2012 (WEP070).

[21] R. Talman, “Representation of Thick Quadrupoles by Thin
Lenses”, technical report SSC-N-33, August 1985.

[22] E. Forest, “Geometric Integration for Particle Accelera-
tors”, J. Phys. A: Math. Gen. 39 (2006) 5321-5377.

[23] L.M. Healy, “Lie Algebraic Methods for Treating Lattice
Parameter Errors in Particle Accelerators”, PhD thesis,
University of Maryland, 1986.

[24] H. Yoshida, “Construction of higher order symplectic inte-
grators”, Physics Letters A, vol. 150, November 1990.

[25] O. Berrig, “Comparison of transfer maps of PTC
and MAD-X for the dipoles magnets: SBENDS and
RBENDS”, http://cern.ch/cern-accelerators-optics,
CERN, 2008.

[26] V.I. Arnold, “Mathematical Methods of Classical Mechan-
ics”, Springer, 2nd, 2006.

[27] E. Hairer, C. Lubich, and G. Wanner, “Geometric Numeri-
cal Integration: Structure Preserving Algorithms for Ordi-
nary Differential Equations”, Springer, 2nd edition, 2006.

[28] C. Hernalsteens, “Modeling the PS for PTC simulations”,
LIS meeting, http://cern.ch/ab-dep-abp/LIS/Minutes

/Minutes.html, CERN, March 2012.

[29] J. Nocedal, and S.J. Wright, “Numerical Optimization”,
Springer, 2nd edition, 2006.

[30] R. De Maria, et al., “Advances in Matching with MAD-X”,
ICAP’06, Chamonix, 2006 (WEPPP14).

[31] H. Burkhardt, M. Giovannozzi, and T. Risselada, “Track-
ing LHC Models with Thick Lens Quadrupoles: Results
and Comparisons with the Standard Thin Lens Tracking”,
IPAC’12, New Orleans, May 2012 (TUPPC079).

[32] S. Fartoukh, “Proposals for changes in the MAD-X code
and in the LHC sequence”, unpublished report, CERN, De-
cember 2008.

[33] E. Keil, “Emma in MAD-X and Comparison with Other Pro-
grams”, CERN ATS Note 2010-044, 2010.

[34] D. Grune, and C.J.H. Jacobs, “Parsing Technics, a Pratical
Guide”, Springer, 2008.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI3

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

225 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

[35] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, “Compil-
ers: Principles, Techniques, and Tools”, Prentice Hall, 2nd

edition, 2006.

[36] “Advanced Memory Management Programming Guide”,
Apple Inc., 2011.

[37] P.K. Janert, “Gnuplot in Action, Understanding Data with
Graphs”, Manning Publications, 2009.

[38] G. Guennebaud, B. Jacob, et al., “The Eigen 3 C++ Li-
brary”, http://eigen.tuxfamily.org, 2010.

[39] C. Sanderson, et al., “Armadillo: An Open Source C++
Linear Algebra Library for Fast Prototyping and Computa-
tionally Intensive Experiments.”, Technical Report, NICTA,
2010.

THAAI3 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

226C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

