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Abstract

The key idea of the research is to consider spin dynamics
in electrostatic fields. Due to the fact, that spin rotation fre-
quency explicitly depends on velocity of the particle and its
kinetic energy is changed in electrostatic fields it is impor-
tant to use some technique that provides both conservation
energy and simplicity condition. An appropriatemathemat-
ical model is described and the results of numerical calcu-
lation are shown. In conclusion, fringe fields influence is
examined and compared with case of ideal fields.

INTRODUCTION

In the article particle dynamics is considered in 8-
dimensional space. A state of dynamic system is de-
scribed as (x, x′, y, y′, Sx, Sy, Ss, t) vector, where x, x′

and y, y′ are transverse and vertical displacement and ve-
locity respectively; Sx, Sy, Ss are components of spin vec-
tor in curvilinear coordinate system (see Fig. 1); t is time
variable. Note, that a state vector depends on arc length s,
which is chosen as an independent variable.

The article consist of three parts. Firstly, mathematical
models of the particle and spin dynamics are discussed. In
the second part the numerical step-by-step integration ap-
proach is presented. And the last part is numerical experi-
ment of fringe fields modeling, where the energy conserva-
tion is especially important condition.

MODEL DESCRIPTION

This section is devoted to the mathematical models of
particle motion and spin dynamics. Both trajectory and
spin equations are presented in generalized form along the
design orbit. In case of straight orbit equations are similar
to description in Cartesian coordinates. Equations along
the arc of a circle are presented without derivation.

Particle dynamics in electrostatic fields is described by
the Newton-Lorenz equation

dp

dt
= qE, (1)

where p is the momentum, q is the charged of the particle,
E is the electric field.

For spin description BMT equation is used [1]

dS

dt
= ω × S, γ =

1√
1− v2/c2

,

ω =
Q

m2
0c

2

1

γ

(
G+

1

1 + γ

)
p× E,

(2)
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where G = (g − 2)/2, g is the anomalous spin factor, γ is
the Lorentz factor.

Figure 1: Curvilinear coordinate system.

Trajectory Equations

Derivation of the trajectory equations that describe the
orbital motion uses generalized coordinates. The design
orbit is chosen in accordance to symmetry of field distribu-
tion. For example, in quadrupole lenses it is a straight line,
in cylindrical or spherical deflectors it is arc of a circle.
Along the arc length the equations are following

x′′ + (1−
v2

c2
)1/2

HG

v
x′

− (1 +
x

R
)
1

R
=

=
QH

m0v
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v2

c2
)1/2HEx/v,

y′′ + (1−
v2

c2
)1/2

HG

v
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QH

m0v
(1−

v2

c2
)1/2HEy/v,

(3)
where H,G is functions of variable x, x′, y, y′, R, R is a
radius of curvature of the design orbit.

Spin Dynamics

The BMT equation in case of arc design orbit is pre-
sented as

S′

x = Ss/R+
Q

m0c2

(
G+

1

1 + γ

)(
(hsEx − x′Es)Ss−

− (x′Ey − y′Ex)Sy

)
,

S′

y =
Q

m0c2

(
G+

1

1 + γ

)(
(x′Ey − y′Ex)Sx−

− (y′Es − hsEy)Ss

)
,

(4)
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S′

s = −Sx/R+
Q

m0c2

(
G+

1

1 + γ

)(
(y′Es − hsEy)Sy−

− (hsEx − x′Es)Sx

)
.

Kinetic Energy Conservation

Note that right-hand sides of the Equations (4) and (3)
contain velocity magnitude v. For the energy conservation
satisfying we can calculate it as

v = c

√
1−

(
(1 − v20/c

2)−1/2
−

Q

m0c2
Φ

)
−2

, (5)

where v0 is the velocity out of electric field,Φ = Φ(x, y, s)
is the potential.

NUMERICAL INTEGRATION

In ideal fields the Equation (5) provides the energy con-
servation itself. But due to the errors in numerical methods
and artificial fields it is not enough. The next mathematical
model allows to control the velocity and correct the particle
motion.

The Equations (4) and (3) can be written as

d

ds
X = F (s,X),

d

ds
v0 = 0,

(6)

whereX = (x, x′, y, y′, Sx, Sy, Ss). Derivative of velocity
is equal to zero, that indicates to the energy conservation.

This allows as to use classical step-by-step integration
methods to solve this system. Article [2] provide both
symplectic Runge-Kutta integration schemes, and the algo-
rithm for it derivation up to the 12 order. For the current re-
search a symplectic 2-stage Runge-Kutta scheme of 4 order

was implemented as a basic approach. Moreover the set of
methods was also implemented (symplectic Euler scheme,
symplectic average point, etc.)

Table 1: 2-stage 4-order Implicit Runge-Kutta Scheme

b1 + c̃1 b1/2 b1/2 + c̃1
b1 − c̃1 b1/2− c̃1 b1/2

b1 = 1/2, 2b1c̃1
2 = 1/12

According to this scheme (Table 1), the solution of the

Xn+1 = Xn + h
∑2

j=1 bjF(s+ hcj ,X
(i)),

X
(i) = Xn + h

∑2
j=1 aijF(s+ hcj ,X

(i)).

This integration method provide a symplectic solution
by choosing the corresponding coefficients aij , bj , cj . Note
that this symplectic scheme imposes the condition of con-
stant integration step h. The simple software environment
for designing and modeling was developed (see Fig. 2) and
all these parameters can be set.

Moreover this scheme requires to solve of implicit equa-
tions and appropriate numerical methods can be used. In
this research standard Newton method was used. So the
precision of the numerical approach depends on step value
and error tolerance for solution of implicit equations.

The scheme does not satisfy to energy conservation at
all. For this purpose velocity derivative was added to the
model. Though the velocity magnitude can be calculate
directly by the x, x′, y, y′, s, t values, but the equation for
it derivation let us introduce an addition control parameter.

For example, this control important to estimate influence
of fringe fields. It is difficult task to introduce fringe fields
that satisfy to Laplas equation. So the simple model for
fringe fields is chosen, where such correction is necessary.

Figure 2: GUI for particle tracking.

Equations (6) can be presented in iterative form
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SIMULATION
The approach was used to examining particle dynamics

in electrostatic storage ring. The lattice consist of hyper-
bolic quadrupoles, cylindrical deflectors and drifts.

Figure 4: Symplectic phase plane and energy conservation.

Figure (4) shows the result of simulation of a particle.
Ellips in x − x′ phase plane indicates to the symplectic
mapping. The kinetic energy is also conserved.

Fringe Fields Influence

To introduce fringe fields simple model was used, when
the potential in fringe fields change as

Φ̃(x, y, s) = k(s) · Φ(x, y, s), (7)

where Φ(x, y, s) is the potential in ideal fields, k(s) is a
function of changes of the potential along the design orbit.
For example, k(s) can described by linear function or Enge
function.

Although the electric fields which described by the Equa-
tion (7) do not satisfy to the physic laws, it can be use for
modeling. Simulation in Cartesian coordinates indicates to
the excessive acceleration of particles (see Fig. 3, a). This
allows us to measure it and introduce to the Equation (6) a
correction v′0 = const.In such way nonphysical accelera-
tion is compensated by artificial chang of the mathematical
model.

Figure 3: Fringe fields influence. a) Tracking without energy conservation. b) Energy conservation correction.

In Fig. (3, b) phase plane with fringe fields influence is
shown. Center of the ellipse is shifted relative to the origin
and symplectic condition is satisfied.

CONCLUSION

The approach described above is devoted to the high pre-
cession step-by-step integration. On the other hand there
are exist mapping algorithms for beam dynamic simulation.
Such methods allows to build map corresponded to the dy-
namic system. In the paper [3] matrix formalism for solv-
ing of ODE is presented. The same mathematical model is
used for beam dynamics description.

Step-by-step integration allows us to obtain the correc-
tion of velocity derivation in fringe fields. This correction
can be introduce to the mapping approach. So tracking al-
gorithms aare used for precision estimation and examining
of the particle dynamics, and mapping approaches are used
for modeling of long-term evolution of beam.
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