
BEAM DYNAMICS SIMULATIONS USING GPUS

J. Fitzek, S. Appel, O. Boine-Frankenheim, GSI, Darmstadt, Germany

Abstract

PATRIC is a particle tracking code used at GSI to study

collective effects in the FAIR synchrotrons. Due to the need

for calculation-intense simulations, parallel programming

methods are being explored to optimize calculation perfor-

mance.

Presently the tracking part of the code is parallelized us-

ing MPI, where each node represents one slice of the parti-

cles that travel through the accelerator. In this contribution

different strategies will be presented to additionally employ

GPUs in PATRIC and exploit their support for data par-

allelism without major code modifications to the original

tracking code. Some consequences of using only single-

precision in beam dynamics simulations will be discussed.

PATRIC SIMULATION CODE

The international FAIR facility with its new accelerators

will be built at GSI, using the existing linac and SIS18 syn-

chrotron as injectors. PATRIC is a particle tracking code

that has been developed at the GSI accelerator physics de-

partment over many years and that is used to study col-

lective effects in the circular accelerators within the FAIR

facility. For more information on PATRIC see also [1].

Structure of the Code

Besides others, the PATRIC simulation code mainly con-

sists of the Pic class as representation of the particles, the

SectorMap class for ion optical elements like magnets in-

cluding their transfer matrix, and the BeamLine class to

group SectorMaps to form the accelerator (see also Fig-

ure 1). The main program takes care of the object creation,

distribution of the calculation, and time measurement.

Figure 1: Structure of the PATRIC simulation code.

Existing Problem Division

Presently the tracking part of the code is parallelized us-

ing MPI, where each node represents one slice of the parti-

cles that travel through the accelerator. For tracking many

thousand particles, a large number of identical calculations

has to be performed on different data. Therefore the deci-

sion was to divide the problem by the data.

Dividing the data can be done in many different ways.

As basis for PATRIC, the particles where diveded longitu-

dinally in slices and assigned to MPI nodes as shown in

side on the same node, this distribution allows to include

the calculation of these effects locally on the MPI node.

By dividing the problem as described, PATRIC is enabled

for distributed computing, which already gives a good per-

formance gain.

Figure 2: Structure of the existing parallelization using

MPI: Each node processes one longitudinal slice of par-

ticles (figure created with CST EM Studio).

Due to the need for even more calculation-intense sim-

ulations for FAIR, parallel programming methods are be-

ing explored to optimize the calculation performance of the

PATRIC simulation code beyond the possibilities of MPI.

In the context of a diploma thesis different strategies are

being investigated to additionally employ GPUs in PATRIC

and exploit their support for data parallelism without major

code modifications to the original tracking code.

Parallelization with GPUs

Today all end user computers contain powerful GPUs

with remarkable floating point performance. GPUs are spe-

cialized on graphics processing and therefore support mas-

sively parallel calculations. Since they are affordable and

nowadays equiped with a general purpose programming in-

terface, they are more and more used to solve calculation-

intense problems. Especially their support for data paral-

lelism makes them suit for the calculations that have to be

performed during particle simulations.

Figure 2. Because particles that interact with each other re-

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THP02

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

227 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Figure 3: CUDA device memory model, NVIDIA, [2].

Mapping of the Problem

For the task to include GPUs in the existing code, an

NVIDIA GPU was used together with CUDA program-

ming. The CUDA device memory model as shown in Fig-

ure 3 allows to achieve a good structuring of the code by

mapping the problem onto threads, blocks and grids. Since

blocks are executed independently from each other, scala-

bility is ensured, and the code can seamlessly be executed

on e.g. a more powerful GPU without the need to rewrite

it. The drawback of GPU programming is the fact that to

copy data from the host to the device memory and back is

very time consuming. Therefore the challenge is to find a

good problem distribution onto the CPU and GPU to gain

from the calculation performance benefit of the GPU.

Development of GPU Code

To develop code for NVIDIA GPUs, different program-

ming models exist that allow either to program on a low

level using CUDA for C++ [2] or to program on a high level

abstraction using the template library Thrust for CUDA [3].

These possibilities are shortly presented using the example

of the transfer function, i. e. a matrix-vector-multiplication

as shown below.

f o r (i n t j =0 ; j <6; j ++) {
R1 [j] = 0 . 0 ;

f o r (i n t l =0 ; l <6; l ++)

R1 [j]+=T [j ∗6+ l]∗R0 [l] ;

}

Figure 4: Code snippet: Original multiplication

Using the low level programming model CUDA for C++

has the advantage, that all features of the NVIDIA GPUs

are available to the programmer. The API gives full control

over the GPU and therefore allows to assign calculation

code directly to parallel execution units by using CUDA

threads, as shown in the example in Figure 5. By structuring

the execution using threads, blocks and grids, the problem

distribution can be handled individually. The drawback of

this solution are many lines of technical code that “pollute”

the original algorithm code, which leads to more complex

code and reduced maintainability.

cudaMal loc (. .) ;

cudaMemcpy (. .) ;

k e r n e l <<<dimGrid , dimBlock>>>(d T ,

d p a r t i c l e V e c t o r s , n u m b e r O f P a r t i c l e s) ;

g l o b a l vo id k e r n e l (. . .) {
(. . .)

f o r (i n t i = 0 ; i < 6 ; i ++) {
v a l u e += t r a n s p o r t M a t r i x [t h r e a d I d x . y ∗ 6 + i]

∗ p a r t i c l e V e c t o r s [p a r t i c l e V e c S t a r t + i] ;

}
s y n c t h r e a d s () ;

p a r t i c l e V e c t o r s [e l e m e n t T o C a l c u l a t e] = v a l u e ;

s y n c t h r e a d s () ;

}

Figure 5: Code snippet: Multiplication using CUDA for

C++, each parallel execution unit calculates one element of

the result vector.

Using the high level programming model Thrust for

CUDA has the advantage, that an abstraction of the GPU is

presented to the developer. Thrust supports differnet GPUs

and programming models and is therefore used whenever

interoperability is needed. Since Thrust provides many pre-

defined functions, it also has a quick learning curve and

supports rapid prototyping. The code stays clear of too

many technical codelines which leads to less complex code

and better maintainability. Drawback of using Thrust is that

it does not provide full control over the GPU, for special

purposes the low level programming must anyway be used.

However, it is possible to mix these two programming mod-

els. Another aspect is that some predefined functions only

support single precision floating point operations, though

the underlying GPU is capable of double precision (see

next section).

t h r u s t : : d e v i c e v e c t o r <f l o a t > x d e v i c e v e c t o r ;

x d e v i c e v e c t o r = x h o s t v e c t o r ; / / copy

vo id t r a n s p o r t g p u (Tmat& T , P i c g p u& p i c s){
(. .)

t h r u s t : : t r a n s f o r m (p i c f i r s t , p i c l a s t ,

p i c f i r s t , r o t a t e p i c (T)) ;

}

Figure 6: Code snippet: Example for using Thrust for the

particle transport.

THP02 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

228C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

02 Particle Tracking and Map Methods

FLOATING POINT CALCULATION

Besides the challenges of code structuring, another im-

portant aspect is the fact, that older GPU models only sup-

port single precision floating point operations, which suf-

fices for standard graphics processing but can be a prob-

lem for calculation-intense physic problems with chaotic

behavior. In the past, lots of problems were not ported to

the GPU because of this issue. Today, most of the recent

GPU models contain double precision support with lower

performance, but the performance continually gets better

(up to 80% with the latest GPU models). However, not all

APIs include double precision support yet. In the context

of this work, this fact must also be taken into account.

FIRST APPROACHES TO EMPLOY GPUS

To employ GPUs in the PATRIC simulation code, a first

approach is to simply perform the transport routine on the

GPU (GPU-Version 1 in Figure 7). The static transfer ma-

trices reside in the global memory of the device (the GPU).

During each transport step, the particle vectors are copied

to the device, the transfer is calculated and the result is

copied back to the host. This approach is simple but as

measurements show the execution time rises due to the

copy overhead in each step.

A second approach is to keep also the particles in the

global memory of the GPU (GPU-Version 2 in Figure 7).

Transport steps can then be performed only on the GPU

which eliminates most of the copy steps. However, inter-

mediate calculations at predefined steps during the overall

calculation must then either be done also on the GPU or –

as one requirement is to keep existing calculation routines

– intermediate particle information must be copied back to

the host to perform these calculations.

Figure 7: PATRIC code with GPU-enabled parts.

FIRST MEASUREMENTS

For first measurements, a desktop computer with six In-

tel 2.67GHz CPUs and one NVIDIA Tesla C2075 GPU was

used. The code was executed with a constant focussing

optic, 10000 macro particles, and 128 cells. The num-

ber of MPI processes was set to one, to exclude impacts

on the performance due to oversubscription of the CPUs

and due to the fact, that only one single GPU was avail-

able. Average execution times were taken from 20 runs.

Figure 8 shows the results of the first measurements. The

10 seconds longer execution time of the GPU-Version 1

compared to the original version can be explained with the

copy overhead within each transport step. This approach

seems not ideal, since too many copy steps outweigh the

calculation performance gain. This leads to the conclusion,

that larger parts of the calculation must be moved to the

GPU to achieve a performance gain. As a next step, the

GPU-Version 2 approach will be implemented and mea-

sured; positive speedup is expected when the particles can

be always kept on the GPU.

Original GPU-Version 1

20

40

60

80

E
xe

cu
tio

n
tim

e
(s

ec
)

Figure 8: First measurements of the code variants.

OUTLOOK

Employing GPUs in the PATRIC code will be elaborated

in the context of a diploma thesis for the GSI accelerator

physics department, supervised by Prof. Dr. Keller, sub-

ject Parallelism and VLSI at the FernUniversität Hagen. As

part of this diploma thesis, different variants will be imple-

mented and measured, including different structuring of the

code, usage of the low or high level API (performance ver-

sus usability), and the utilization of single or double preci-

sion (performance versus error cumulation).

Already the first tests indicate, that the copy overhead is

one of the limiting factors. Structuring the code in such a

way, that bigger amounts of related calculations can be per-

formed on the GPU might be a promising approach. There-

fore, the idea to completely keep the particles on the GPU

will be investigated further. The constraint is that it must

still be possible to include existing particle quantity calcu-

lations (e. g. emittance) at predefined points in the overall

execution.

If employing of GPUs succeeds, future extensions are

foreseen that include e.g. calculation of space charge ef-

fects and particle kicks locally on each node again by using

the GPU do do these calculations.

REFERENCES

[1] O. Boine-Frankenheim, V. Kornilov, “Simulation of Trans-

verse Coherent Effects in Intense Ion Bunches”, this confer-

ence, TUAAI3.

[2] NVIDIA Corporation, “CUDA Programming Guide”,

Santa Clara USA, 2007.

[3] Thrust, open source parallel algorithms library, available at

http://code.google.com/p/thrust

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THP02

02 Particle Tracking and Map Methods

ISBN 978-3-95450-116-8

229 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

