
INDEPENDENT COMPONENT ANALYSIS (ICA) APPLIED TO LONG

BUNCH BEAMS IN THE LOS ALAMOS PROTON STORAGE RING∗

J. Kolski† , R. Macek, R. McCrady, X. Pang, LANL, Los Alamos, NM, 87545, USA

Abstract

Independent component analysis (ICA) is a powerful

blind source separation (BSS) method[1]. Compared to the

typical BSS method, principal component analysis (PCA),

which is the BSS foundation of the well known model in-

dependent analysis (MIA)[2], ICA is more robust to noise,

coupling, and nonlinearity[3, 4, 5]. ICA of turn-by-turn

beam position data has been used to measure the trans-

verse betatron phase and amplitude functions, dispersion

function, linear coupling, sextupole strength, and nonlinear

beam dynamics[3, 4, 5]. We apply ICA in a new way to

slices along the bunch, discuss the source signals identified

as betatron motion and longitudinal beam structure, and for

betatron motion, compare the results of ICA and PCA.

INTRODUCTION

We apply BSS in a new way to slices along the bunch[6].

We digitize beam signals from the Los Alamos Proton

Storage Ring (PSR) for a full injection-extraction cycle,

≥ 1800 turns. We divide the digitized signal into time

slices of equal length using the 0.5 ns digitization bin

length. The long digitized signal vector is stacked turn-

by-turn to form the data matrix

x(t) =











x1(1) x1(2) . . . x1(N)
x2(1) x2(2) . . . x2(N)

...
...

. . .
...

xM (1) xM (2) . . . xM (N)











, (1)

such that each row of x is data from a single time slice for

all N turns, and each column of x is data from all M time

slices for a single turn. The slices are located at a fixed

longitudinal phase and position along the bunch. The last

turn beam profile plotted in Fig. 1 is an example of the last

column of x.

ICA and PCA model x as a linear combination of inde-

pendent components (ICs) and principal components (PCs)

respectively and yield respectively modes and patterns, de-

scribing the source signal’s strength in space (along the

bunch) and time.

Principal Component Analysis (PCA)

PCA is the simplest of the BSS methods. Many other

BSS methods use PCA for preprocessing and noise reduc-

tion. PCA was originally applied for beam analysis in the

well known MIA.
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Figure 1: The last turn beam profile as an example of the

last column of the data matrix x in Eq. (1). The PSR’s rev-

olution period is 358 ns corresponding to 716 time slices.

PCA identifies patterns in data and expresses the high-

dimensional data by highlighting the underlying structures

represented as PCs. The PCs are used to compress data by

reducing redundant dimensions without much loss of infor-

mation. PCA minimizes the redundancy measured by co-

variance, maximizes the signal measured by variance, and

results in uncorrelated PCs. Two random variable vectors

~y1 and ~y2 are uncorrelated if their covariance is zero,

cov(~y1, ~y2) = 〈~y1, ~y2〉 − 〈~y1〉〈~y2〉 = 0, (2)

where 〈. . . 〉 is the expectation value. The core of PCA is

singular value decomposition (SVD). SVD of the data ma-

trix x (M×N ) yields eigenvectorsU (M×M ) in column-

space and V (N×N ) in row-space connected by a diagonal

matrix of singular values (SVs) Λ (M ×N ),

x = UΛVT . (3)

The columns of U span column-space, the M -

dimensional space of time slice number, and are called spa-

tial patterns. The columns of V span row-space, the N -

dimensional space of turn number, and are called temporal

patterns. The PCs are ordered by their SVs, which repre-

sent their strength.

Independent Component Analysis (ICA)

The objective of ICA is to calculate the L source signals

s (L×N ) given the data matrix x (M×N ), but the mixing

FRABI1 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

294C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

10 Controls and Simulation



matrix A (M × L) is unknown

x = As. (4)

ICA assumes independent source signals, a stricter re-

quirement than PCA. Two random variable vectors ~y1 and

~y2 are independent if the covariance of any function of ~y1
and any function of ~y2 is zero,

〈f(~y1), g(~y2)〉 − 〈f(~y1)〉〈g(~y2)〉 = 0. (5)

For time series data, source signal independence is re-

lated to diagonality of covariance matrices[7]. The auto-

covariance of a signal is cov(~yi(t), ~yi(t− τ)), where τ is a

time lag, τ = 0, 1, 2, . . . Similarly, the covariance between

two signals is cov(~yi(t), ~yj(t − τ)) where i 6= j. Apply-

ing these two results to mean-zero signals for reasons to

become evident later, we write the time-lagged covariance

matrix

Cy(τ) = 〈y(t)y(t − τ)T 〉. (6)

Source signal independence requires the time-lagged co-

variance matrices Cs(τ) = 〈s(t)s(t− τ)T 〉 be diagonal,

〈si(t)sj(t− τ)T 〉 = 0, i 6= j, τ = 0, 1, 2, . . . . (7)

It follows that A−1x must also possess diagonal time-

lagged covariance matrices. The BSS problem is solved

by obtaining a demixing matrix that diagonalizes the time-

lagged covariance matrices of x.

The zero time-lagged covariance matrix Cx(τ = 0)
does not contain enough information to obtain the mix-

ing matrix A. The key is to utilize the additional infor-

mation contained in the time-lagged covariance matrices

Cx(τ). Including more than one time lag improves ICA’s

performance by resolving degenerate SVs, but it introduces

an additional complication of simultaneously diagonaliz-

ing many Cx(τ). A numerical technique for simultane-

ously diagonalizing several matrices with Jacobi angles is

discussed in Ref. [8]. Typically, 20 - 50 time lags are re-

quired to separate source signals with close SVs[4, 5]. We

use the ICA algorithm Second Order Blind Identification

(SOBI)[7], which accommodates multiple time lags, in our

analysis and outline the algorithm below:

1. Whitening

The data matrix x is preprocessed to obtain mean-zero,

whitened (yyT = I) data. Mean-zero data, which sim-

plifies the covariance matrix calculation, is calculated by

subtracting the average over the temporal variation. SVD

is applied to the zero time-lagged covariance matrix of the

mean-zero data matrix x̄

Cx̄(0) = 〈x̄(t)x̄(t)T 〉

=
(

U1,U2

)

(

Λ1 0
0 Λ2

)(

UT
1

UT
2

)

,
(8)

where Λ1 and Λ2 are diagonal matrices of SVs separated

by a cutoff threshold λc such that min(diag[Λ1]) ≥ λc ≥

max(diag[Λ2]). The cutoff threshold λc is determined by

the number of SVs L included in the analysis. U1 and U2

are eigenvectors corresponding to Λ1 and Λ2 respectively.

The mean-zero, whitened data is calculated

z = Yx̄, (9)

where zzT = I , Y = Λ
−1/2
1

UT
1

, and Λ
−1/2
1

indicates the

inverse square root of the diagonal elements individually.

2. Joint diagonalization

The time-lagged covariance matrices of the mean-zero,

whitened data matrix z are calculated for a set of time lags

(τk, k = 0, 1, . . . , K)

Cz(τk) = 〈z(t)z(t − τk)
T 〉. (10)

Modified time-lagged covariance matrices C̄z(τk) are con-

structed from Cz(τk)

C̄z(τk) =
(

Cz(τk) +Cz(τk)
T
)

/2. (11)

SVD is well defined, since C̄z(τk) is real and symmetric

C̄z(τk) = WDkW
T , (12)

where W is the unitary demixing matrix and Dk is a diag-

onal matrix. The Jacobi angle technique discussed in Ref.

[8] is used to find the demixing matrix W, which is a joint

diagonalizer for all C̄z(τk). The mixing matrix A and the

source signals s are calculated

A = Y−1W and s = WTYx̄. (13)

The columns of A span column-space, the M -

dimensional space of time slice number, and are called

spatial modes. The rows of s span row-space, the N -

dimensional space of turn number, and are called temporal

modes.

INDEPENDENT COMPONENTS

We digitize beam signals from a short stripline beam po-

sition monitor (BPM) with 400 MHz peak frequency re-

sponse. We digitize the BPM’s vertical sum and difference

signals for BSS.

We typically ran our SOBI analysis for L = 30 SVs,

K = 50 time lags, and as many turns as possible.

ICs are presented in several graphs; see Fig. 2:

Top left spatial mode (blue), last turn beam profile

(green).
Bottom left fft of spatial mode (top left), peak integer rev-

olution harmonic, resolution (1/1).
Top center integrated spatial mode (top left) (blue), last

turn beam profile (green).
Bottom center correlation of IC and z(t − τ), SV.
Top right temporal mode (−1 = last turn), fractional rev-

olution harmonic from sinusoid fit.
Bottom right fft of temporal mode (top right), peak frac-

tional revolution harmonic, resolution (1/N).
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Betatron ICs

In previous applications, ICA obtains quality ICs repre-

senting betatron motion [3, 4, 5], so the betatron IC result

from slices along the bunch is of interest. We induce coher-

ent betatron oscillation with a single-turn kick. The beam

is stored for 420 turns (150 µs) after the kick.

The IC in Fig. 2 is identified as betatron motion because

the fractional revolution harmonic (bottom right) is close

to the operating fractional betatron tune value 0.1805 and

because the temporal mode (top right) is only nonzero for

turns after the single-turn kick.

The spatial mode (top left) indicates the strength of the

0.1805 fractional betatron tune oscillation along the beam

bunch. However, in this case it is easier to interpret the inte-

grated spatial mode (top center) because it has units propor-

tional to current, whereas the spatial mode has units propor-

tional to the derivative of the current. The integrated spatial

mode maximums indicate that the majority of particles un-

dergoing coherent betatron motion with a fractional tune

of 0.1805 are located symmetric about the bunch center at

time slices 237 and 474 and represent the coherent space

charge tune shifted beam. The fast oscillation slightly for-

ward of the bunch center describes mixing of betatron tunes

for the central time slices.

We wish to compare the 15 identified betatron ICs with

each other and with the FFT(x). We define the greatest

strength location to be the fractional revolution harmonic

and time slice where an IC is strongest. The time slice co-

ordinate is determined by the integrated spatial mode (top

center) maximum. We calculate a leading and trailing edge

greatest strength location for each IC and compare with

FFT(x) in Fig. 3. The greatest strength locations of the

15 betatron ICs reproduce the tune distribution along the

bunch. The spatial mode (top left) in Fig. 2 replicates the

0.1805 fractional tune contour along the bunch of the tune
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distribution in Fig. 3. The betatron ICs must be viewed in

concert as in Fig. 3 to obtain the full picture of the coherent

space charge tune shift along the bunch.

We compare the PCA result with FFT(x) in Fig. 4. We

include in Fig. 4 all PCs with mixed betatron motion. Most

Figure 3: Betatron tune along the bunch and the greatest
strength location for the first 30 ICs, some of which lie out-
side the plot boundary. The contour plots FFT(x) along
turn for each time slice. The red and green circles mark the
leading and trailing edge greatest strength locations respec-
tively with IC number indicated by numeric labels. The
beam profile peak is located at time slice 350.

Figure 2: Typical betatron IC resulting from ICA of the
difference signal for a single-turn kick.

Figure 4: Betatron tune along the bunch and the greatest
strength location for the first 30 PCs, some of which lie
outside the plot boundary. The contour plots FFT(x) along
turn for each time slice. The red (yellow) and green (cyan)
circles mark the leading and trailing edge greatest strength
locations respectively for PCs with dominant betatron mo-
tion (dominant source signal other than betatron motion).
A numeric label indicates PC number. The beam profile
peak is located at time slice 350.
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betatron PCs have peak strengths located near the bunch

center where the difference signal is largest because PCA

is unable to diagonalize the frequency continuum beyond

its peak strength and average location. It is clear from Fig.

4 that PCA is unable to recover the coherent space charge

tune shift along the bunch.

201.25 MHz IC

The 201.25 MHz IC represents the longitudinal structure

of beam newly injected in the PSR, Fig. 5. The 201.25

MHz IC is identified by the character of its temporal mode

(top right), which has constant amplitude for the first 1400

turns and suddenly reduces to noise for the last 500 turns.

The reduction coincides with the end of accumulation.

The total revolution harmonic is 72.07136 as expected

because the PSR design revolution frequency is the 72.07

subharmonic of the 201.25 MHz linac frequency. Multi-

plying the total revolution harmonic by the revolution fre-

quency yields exactly 201.25 MHz. The 0.07 fractional

revolution harmonic describes the 14 turn rastering period

of the longitudinal phase space painting executed during

injection.

The power of ICA, which lies in the spatial mode (top

left), is most prominent in this example. The spatial mode

describes the longitudinal phase of the injected beam. The

spatial mode is constant amplitude across the injection re-

gion and zero outside. The spatial mode also describes the

injection length each turn (pattern width). The spatial mode

is a sinusoidal oscillation with period 5 ns, a 201.25 MHz

period, and 58 peaks. Each peak represents a single linac

pulse (linac RF bucket) injected into the PSR. The injection

pattern width is 290 ns, which divided by the 201.25 MHz

period yields 58 linac pulses injected per turn as indicated

by the spatial mode peaks.

We now examine additional examples of the spatial
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mode (top left) produced from beam signals collected un-

der different injection schemes. The IC plotted in Fig. 6

was produced from beam signal collected while injecting

a 50 ns pattern width beam 120◦ early in the PSR’s RF

bucket. The injection region of the spatial mode is 100 time

slices wide, corroborating the pattern width. Additionally,

the spatial mode’s position has shifted forward, confirming

early injection. The last turn profile indicates that after 200

µs of storage the majority of beam is located opposite in

the RF bucket of where it was injected.

The IC plotted in Fig. 7 was produced from beam signals

collected while injecting with a “notch” in the beam, illus-

trated by the spatial mode (top left). The injection region

Figure 6: The 201.25 MHz IC resulting from ICA of the
sum signal when injecting a 50 ns pattern width beam 120◦

early in the PSR’s RF bucket.

Figure 7: The 201.25 MHz IC resulting from ICA of the
sum signal when injecting beam with a notch.

Figure 5: Typical 201.25 MHz IC resulting from ICA of
the sum signal.
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widths are 60 time slices, and the notch width between the

two injection regions is 180 time slices. The spatial mode

reproduces the notch injection scheme: inject for 30 ns, no

injection for 90 ns (notch), and inject for 30 ns.

At the beginning of the 2010 LANSCE production run

cycle, we observed an unusual amount of “hash” noise-like

structure on the PSR beam profile. The hashy beam profile

is an operational concern because it could excite longitu-

dinal microwave instabilities and other longitudinal space

charge effects[9, 10]. We wished to remove the hash from

the beam profile, but did not know where to look for the

cause, so we took data for ICA. ICA of the hashy beam

signal yields the 201.25 MHz IC plotted in Fig. 8, which

is reminiscent of Fig. 5 with obvious difference in the tem-

poral mode (top right). A fractional revolution harmonic

0.009 describes an oscillation that repeats every 111 turns.

The slow injection rastering causes the hashy beam profile

by longitudinally stacking the beam upon itself more than

in nominal operations where the fractional revolution har-

monic is 0.07.

We calculate the PSR revolution frequency from the IC

plotted in Fig. 8. The unchanging 201.25 MHz linac fre-

quency is divided by the total revolution harmonic 72.009.

This results in a revolution frequency of 2.7948 MHz.

However, the PSR design revolution frequency is 2.7924

MHz. The revolution frequency differs from design by 2.4

kHz causing the hash on the current profile.

The PSR revolution frequency is created by a frequency

generator into which a value is typed. For this run, the

frequency generator value was inadvertently set to 2.7948

MHz; exactly the number predicted by ICA.

CONCLUSIONS

We adopt a new method applying ICA to slices along the

beam and test with PSR sum and difference beam position

signals digitized for an entire injection-extraction cycle.

We determine that PCA is inadequate for the BSS prob-

lem of slices along the bunch because PCA is unable to

completely separate the source signals, yielding PCs de-

scribing a mixture of two or more source signals.

We discuss two classes of ICs identified by spatial and

temporal modes. When viewed in concert, the ICs describ-

ing betatron motion along the pulse yielded the coherent

space charge tune shift. Another IC described the longitu-

dinal structure of newly injected beam and gave the longi-

tudinal phase of injection and the revolution frequency.
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Figure 8: 201.25 MHz IC resulting from ICA of the sum
signal when the revolution frequency is near an integer sub-
harmonic of the linac frequency.
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