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Abstract 
Linac dynamics simulation capabilities of the 

PyORBIT code are discussed. PyORBIT is an open 

source code and a further development of the original 

ORBIT code that was created and used for design, 

studies, and commissioning of the SNS ring. The 

PyORBIT code, like the original one, has a two-layer 

structure. C++ is used to perform time-consuming 

computations, and the program flow is controlled from a 

Python language shell. The flexible structure makes it 

possible to use PyORBIT also for linac dynamics 

simulations. A benchmark of PyORBIT with Parmila and 

the XAL Online model is presented. 

INTRODUCTION 

The negative hydrogen ion SNS linac was designed [1] 

by using the Parmila accelerator simulation code [2]. In 

addition to envelope tracking codes, such as the XAL 

online model that is used routinely in the SNS control 

room, particle in cell (PIC) simulation codes like Parmila 

are valuable tools for halo growth calculations and beam 

loss estimation in heavy ion linear accelerators. 

Unfortunately, the Parmila code is not actively supported 

today, and a large project, such as SNS, cannot afford to 

lose PIC simulation capabilities for any part of the 

accelerator. During the search performed by the SNS 

accelerator physics group, we could not find an 

accelerator code that satisfies the necessary conditions of 

the full control over the source code, the underlying 

physical models, and possible modifications. To solve this 

problem we started the development of a home-grown 

open source linac accelerator code on an existing 

platform, namely the PyORBIT code.   

PY-ORBIT AND ORBIT CODES 

PyORBIT is a PIC code developed from the original 

ORBIT code [3]. ORBIT has been used for the design of 

the SNS ring and transfer lines, simulations of collective 

effects for SNS, and for other projects. PyORBIT, like the 

original ORBIT, has a two-language structure. Time-

consuming calculations are performed at the C++ 

language level, and a simulation flow control is 

implemented in a scripting language. In PyORBIT the 

outdated and unsupported SuperCode is replaced by 

Python, an interpreted, interactive, object-oriented, 

extensible programming language. The PyORBIT project 

was started not only to replace the old programming 

technologies, but to perform calculations for the laser 

stripping experiment [4] which could not be performed by 

the original ORBIT. At this moment, PyORBIT does not 

have all features of the original code, but we are in the 

process of transferring the old ORBIT modules to the new 

code. It is not a straightforward process because of 

ubiquitous SuperCode dependencies in ORBIT. On the 

other hand, this provides the opportunity to restructure the 

modules in a more efficient and clear way. 

The structure of the PyORBIT code was described in 

Ref. [3]. From the beginning the code has been 

developing as a loose structure capable of accommodating 

many weakly or completely unrelated projects. We took 

advantage of this feature of PyORBIT when the linac 

simulation part was included into the code. 

LINAC PART OF PY-ORBIT CODE 

The new linear accelerator lattice package in PyORBIT 

is a concrete implementation of abstract accelerator lattice 

classes described in [3]. Therefore, right now we have 

two types of the lattices – one for rings and transfer lines, 

which is similar to the lattice of the original ORBIT code, 

and another for the linear accelerators. The new 

implementation was necessary because the energy of a 

synchronous particle changes along the linac lattice, and 

the parameters of the lattice elements must be changed 

accordingly. In addition to this feature of the linear 

accelerator lattice, we implemented a more complicated 

structure that includes subsequences and RF cavities that 

in turn consist of RF gaps. The RF cavities themselves are 

not lattice elements. They are used to synchronize the 

phases of all RF gaps that belong to a particular RF 

cavity. Before using this type of lattice, it must be 

initialized by tracking a design particle to map its arrival 

time at each RF cavity. Only after that will changes to the 

cavity amplitudes or phases in the model reflect the 

changes in the real machine. 

At present, a linac lattice can be built in two ways. 

First, it can be constructed right in a PyORBIT script by 

adding lattice elements one by one. Second, it can be built 

by using an input XML file and linac lattice parser. The 

parser assumes a certain structure of the input XML file. 

This structure will be standardized in the future when the 

list of necessary parameters is agreed upon among all 

users. At this moment, all classes in the linac packages are 

considered experimental, and they are kept in a specific 

SNS linac directory. All these classes are pure Python 

classes. They are lightweight and can be easily modified 

to accommodate different requests. It is also possible to 

implement a third type of abstract accelerator lattice if a 

more universal approach is required in the future. 

There are several new C++ classes that have been 

created to simulate physics in linear accelerators. They 

include two types of space charge calculations and a 

simplified RF gap model. We plan to implement more 

sophisticated RF models in the near future.  
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THE RF GAP MODEL 

An accelerator node representing a zero length RF gap 

changes the energy of each macro-particle in the bunch 

and performs transverse focusing or defocusing according 

the arrival time (a relative phase) of this particle: 
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where W is the kinetic energy, TLE0 is the maximum 

energy gain, RFϕ and ϕ  are the phases of RF and macro-

particle relative to the synchronous particle, γ and β are 

relativistic parameters, r  and 'r are the transverse 

coordinate and angle of the macro-particle, and fk  is a 

transverse focusing coefficient [5]. 

THE SPACE CHARGE MODULES 

Usually, particle bunches in rings and linear 

accelerators have different ratios between longitudinal 

and transverse sizes, and therefore methods of space 

charge calculation are different. At present, the PyORBIT 

space charge modules for linacs, where the transverse and 

longitudinal sizes are comparable, include two methods: 

3D uniformly charged ellipsoid field and a 3D FFT 

Poisson solver. 

Electric Field of Uniformly Charged Ellipsoid  

The simplest way to calculate space charge forces for 

the linac bunch is to approximate its charge distribution 

by a uniformly charged 3D ellipsoid. The electric field 

inside and outside of such an object can be easily 

calculated [6], and the space charge force momentum 

kicks are applied to each macro-particle in the bunch. The 

parameters of the ellipsoid are found from the condition 

of equality of rms sizes for the real bunch and the 

approximation. This scheme is very simple and fast, and it 

will work even if the linac bunch consists of very few 

macro-particles (several hundreds is an acceptable 

number). This approach can be considered a variant of 

beam envelope calculations in Trace3D or in the XAL 

online model. If the charge density distribution is more 

complicated, an arbitrary number of uniformly charged 

ellipsoids can be used. 

3D FFT Poisson Solver 

If the linac bunch has an asymmetric shape, the Poisson 

equation for the electric potential should be solved by an 

exact method. For this purpose PyORBIT has a 3D FFT 

Poisson solver that uses the FFTW library. This solver 

will work in the case of parallel calculations, but it has 

bad parallel scalability, because all calculations related to 

the FFT transformations are identical and are performed 

on each CPU. The parallel efficiency of this module is 

determined only by the distribution of the macro-particles 

between CPUs. In the future we plan to add more efficient 

3D Poisson Poisson solvers. 

PY-ORBIT VS. PARMILA 

A benchmark between Parmila and PyORBIT for linear 

accelerators was performed for the warm linac of the SNS 

accelerator. It includes the Medium Energy Beam 

Transfer (MEBT) line, Drift Tube Linac (DTL), and the 

Coupled Cavity Linac (CCL). All efforts were made to 

create identical lattices for the two codes. PyORBIT 

generated an initial “water-bag” distribution of 20000 

macro-particles. The exact particle coordinates were 

translated to Parmila notation and packed into the 

Parmila’s direct access FORTRAN file. The design initial 

Twiss parameters were used. The peak current of the linac 

bunch was set to 38 mA. The uniformly charged ellipsoid 

model was used for the space charge nodes in the 

PyORBIT lattice. For Parmila’s space charge calculations 

the option “3D Picnic” was used. The execution time for 

the PyORBIT script on one CPU was about five times 

faster than for Parmila. The results of the simulations for 

all 90 meters of the warm SNS linac are shown in Fig. 1. 

 

 

Figure 1: The calculated rms sizes of the bunch (on the 

left side) and emittances (on the right) in the warm part 

(MEBT-DTL-CCL) of the SNS linac. The black line is for 

Parmila, and the red one is for PyORBIT.  

There is not perfect agreement between the Parmila and 

PyORBIT results, but we have to take into account that in 

the PyORBIT simulations we used a simplified RF gap 

model. That can explain the big differences between the 

longitudinal emittances for the two codes seen in Fig. 1. 

The usage of 3D the Poisson solver instead of the uniform 

ellipse model did not change the PyORBIT results much. 

The execution time was twice as fast for PyORBIT with 

the same number of grid points in the 3D solver. 

Our benchmark can be compared to the benchmark 

between the Track code and Parmila for the DTL part of 

the SNS linac [7]. The quality of agreement in the Track-

Parmila and PyORBIT-Parmila benchmarks are similar, 

especially if we take into account that here we include 

90 meters (MEBT-DTL-CCL) of the SNS linac instead of 

40 meters (DTL only) as in Ref. [7]. 
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PY-ORBIT AND XAL ONLINE MODEL 

Another benchmark to check the correctness of the 

linac part of the PyORBIT code involves the XAL online 

model (OM) [8]. OM is an envelope tracking code that 

was carefully tested against Parmila, Impact, Trace3D, 

and the SNS linac real measurements. The results of 

PyORBIT and OM for the SNS Superconducting Linac 

(SCL) are shown in Fig. 2. Both simulations include 

space charge effects for a peak current of 38 mA. The 

agreement between the two codes is very good, especially 

if we keep in mind the fundamental differences between 

codes: one is a PIC and the other is an envelope-tracking 

code. 

 

Figure 2: The transverse and longitudinal rms sizes of the 

bunch in the SNS SCL linac simulated with PyORBIT 

(red line) and OM (black line) codes. 

FUTURE PY-ORBIT DEVELOPMENT 

The most urgent need of the linac part of PyORBIT is a 

development of more comprehensive RF gap models. We 

are going to develop at least two new models. The first 

model will reproduce Parmila’s approach [5] with the 

same simulation time, and the second one will include the 

3D tracking of each particle in the time dependent 

electromagnetic field of the cavity. The second model will 

slow down the simulations, but it will allow verification 

of the simplified approaches. 

Another addition will be a collimation module that will 

be moved from the original ORBIT. It will be shared with 

the ring related part of PyORBIT, and it will provide the 

loss accounting for the linac models. It also can be used 

for a design of collimation systems at SNS. 

The development of the new space charge modules will 

depend on available manpower and a real necessity in 

parallel calculations. 

CONCLUSIONS 

Linac beam dynamics simulation capabilities have been 

successfully implemented into the PyORBIT code, which 

was previously restricted to rings and transport lines. The 

new linac part has been successfully benchmarked against 

Parmila and the XAL Online Model. The simplified RF 

cavity model and a non-scalable parallel 3D space charge 

solver will be supplemented with more realistic and 

effective models. 

PyORBIT is an open source code, and it can be 

downloaded from the Google project hosting [9] 
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