
LINAC BEAM DYNAMICS SIMULATIONS WITH PY-ORBIT

A. Shishlo
*
, ORNL, Oak Ridge, TN 37830, USA

Abstract
Linac dynamics simulation capabilities of the

PyORBIT code are discussed. PyORBIT is an open

source code and a further development of the original

ORBIT code that was created and used for design,

studies, and commissioning of the SNS ring. The

PyORBIT code, like the original one, has a two-layer

structure. C++ is used to perform time-consuming

computations, and the program flow is controlled from a

Python language shell. The flexible structure makes it

possible to use PyORBIT also for linac dynamics

simulations. A benchmark of PyORBIT with Parmila and

the XAL Online model is presented.

INTRODUCTION

The negative hydrogen ion SNS linac was designed [1]

by using the Parmila accelerator simulation code [2]. In

addition to envelope tracking codes, such as the XAL

online model that is used routinely in the SNS control

room, particle in cell (PIC) simulation codes like Parmila

are valuable tools for halo growth calculations and beam

loss estimation in heavy ion linear accelerators.

Unfortunately, the Parmila code is not actively supported

today, and a large project, such as SNS, cannot afford to

lose PIC simulation capabilities for any part of the

accelerator. During the search performed by the SNS

accelerator physics group, we could not find an

accelerator code that satisfies the necessary conditions of

the full control over the source code, the underlying

physical models, and possible modifications. To solve this

problem we started the development of a home-grown

open source linac accelerator code on an existing

platform, namely the PyORBIT code.

PY-ORBIT AND ORBIT CODES

PyORBIT is a PIC code developed from the original

ORBIT code [3]. ORBIT has been used for the design of

the SNS ring and transfer lines, simulations of collective

effects for SNS, and for other projects. PyORBIT, like the

original ORBIT, has a two-language structure. Time-

consuming calculations are performed at the C++

language level, and a simulation flow control is

implemented in a scripting language. In PyORBIT the

outdated and unsupported SuperCode is replaced by

Python, an interpreted, interactive, object-oriented,

extensible programming language. The PyORBIT project

was started not only to replace the old programming

technologies, but to perform calculations for the laser

stripping experiment [4] which could not be performed by

the original ORBIT. At this moment, PyORBIT does not

have all features of the original code, but we are in the

process of transferring the old ORBIT modules to the new

code. It is not a straightforward process because of

ubiquitous SuperCode dependencies in ORBIT. On the

other hand, this provides the opportunity to restructure the

modules in a more efficient and clear way.

The structure of the PyORBIT code was described in

Ref. [3]. From the beginning the code has been

developing as a loose structure capable of accommodating

many weakly or completely unrelated projects. We took

advantage of this feature of PyORBIT when the linac

simulation part was included into the code.

LINAC PART OF PY-ORBIT CODE

The new linear accelerator lattice package in PyORBIT

is a concrete implementation of abstract accelerator lattice

classes described in [3]. Therefore, right now we have

two types of the lattices – one for rings and transfer lines,

which is similar to the lattice of the original ORBIT code,

and another for the linear accelerators. The new

implementation was necessary because the energy of a

synchronous particle changes along the linac lattice, and

the parameters of the lattice elements must be changed

accordingly. In addition to this feature of the linear

accelerator lattice, we implemented a more complicated

structure that includes subsequences and RF cavities that

in turn consist of RF gaps. The RF cavities themselves are

not lattice elements. They are used to synchronize the

phases of all RF gaps that belong to a particular RF

cavity. Before using this type of lattice, it must be

initialized by tracking a design particle to map its arrival

time at each RF cavity. Only after that will changes to the

cavity amplitudes or phases in the model reflect the

changes in the real machine.

At present, a linac lattice can be built in two ways.

First, it can be constructed right in a PyORBIT script by

adding lattice elements one by one. Second, it can be built

by using an input XML file and linac lattice parser. The

parser assumes a certain structure of the input XML file.

This structure will be standardized in the future when the

list of necessary parameters is agreed upon among all

users. At this moment, all classes in the linac packages are

considered experimental, and they are kept in a specific

SNS linac directory. All these classes are pure Python

classes. They are lightweight and can be easily modified

to accommodate different requests. It is also possible to

implement a third type of abstract accelerator lattice if a

more universal approach is required in the future.

There are several new C++ classes that have been

created to simulate physics in linear accelerators. They

include two types of space charge calculations and a

simplified RF gap model. We plan to implement more

sophisticated RF models in the near future.

*shishlo@ornl.gov

MOSBC2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

20C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

10 Controls and Simulation

THE RF GAP MODEL

An accelerator node representing a zero length RF gap

changes the energy of each macro-particle in the bunch

and performs transverse focusing or defocusing according

the arrival time (a relative phase) of this particle:

)cos(0 ϕϕ +⋅+= RFinout TLEWW (1)

rkrr RFf

out

in
out ⋅+−⋅=)('

)(

)(
' ϕϕ

γβ

γβ
 (2)

where W is the kinetic energy, TLE0 is the maximum

energy gain, RFϕ and ϕ are the phases of RF and macro-

particle relative to the synchronous particle, γ and β are

relativistic parameters, r and 'r are the transverse

coordinate and angle of the macro-particle, and fk is a

transverse focusing coefficient [5].

THE SPACE CHARGE MODULES

Usually, particle bunches in rings and linear

accelerators have different ratios between longitudinal

and transverse sizes, and therefore methods of space

charge calculation are different. At present, the PyORBIT

space charge modules for linacs, where the transverse and

longitudinal sizes are comparable, include two methods:

3D uniformly charged ellipsoid field and a 3D FFT

Poisson solver.

Electric Field of Uniformly Charged Ellipsoid

The simplest way to calculate space charge forces for

the linac bunch is to approximate its charge distribution

by a uniformly charged 3D ellipsoid. The electric field

inside and outside of such an object can be easily

calculated [6], and the space charge force momentum

kicks are applied to each macro-particle in the bunch. The

parameters of the ellipsoid are found from the condition

of equality of rms sizes for the real bunch and the

approximation. This scheme is very simple and fast, and it

will work even if the linac bunch consists of very few

macro-particles (several hundreds is an acceptable

number). This approach can be considered a variant of

beam envelope calculations in Trace3D or in the XAL

online model. If the charge density distribution is more

complicated, an arbitrary number of uniformly charged

ellipsoids can be used.

3D FFT Poisson Solver

If the linac bunch has an asymmetric shape, the Poisson

equation for the electric potential should be solved by an

exact method. For this purpose PyORBIT has a 3D FFT

Poisson solver that uses the FFTW library. This solver

will work in the case of parallel calculations, but it has

bad parallel scalability, because all calculations related to

the FFT transformations are identical and are performed

on each CPU. The parallel efficiency of this module is

determined only by the distribution of the macro-particles

between CPUs. In the future we plan to add more efficient

3D Poisson Poisson solvers.

PY-ORBIT VS. PARMILA

A benchmark between Parmila and PyORBIT for linear

accelerators was performed for the warm linac of the SNS

accelerator. It includes the Medium Energy Beam

Transfer (MEBT) line, Drift Tube Linac (DTL), and the

Coupled Cavity Linac (CCL). All efforts were made to

create identical lattices for the two codes. PyORBIT

generated an initial “water-bag” distribution of 20000

macro-particles. The exact particle coordinates were

translated to Parmila notation and packed into the

Parmila’s direct access FORTRAN file. The design initial

Twiss parameters were used. The peak current of the linac

bunch was set to 38 mA. The uniformly charged ellipsoid

model was used for the space charge nodes in the

PyORBIT lattice. For Parmila’s space charge calculations

the option “3D Picnic” was used. The execution time for

the PyORBIT script on one CPU was about five times

faster than for Parmila. The results of the simulations for

all 90 meters of the warm SNS linac are shown in Fig. 1.

Figure 1: The calculated rms sizes of the bunch (on the

left side) and emittances (on the right) in the warm part

(MEBT-DTL-CCL) of the SNS linac. The black line is for

Parmila, and the red one is for PyORBIT.

There is not perfect agreement between the Parmila and

PyORBIT results, but we have to take into account that in

the PyORBIT simulations we used a simplified RF gap

model. That can explain the big differences between the

longitudinal emittances for the two codes seen in Fig. 1.

The usage of 3D the Poisson solver instead of the uniform

ellipse model did not change the PyORBIT results much.

The execution time was twice as fast for PyORBIT with

the same number of grid points in the 3D solver.

Our benchmark can be compared to the benchmark

between the Track code and Parmila for the DTL part of

the SNS linac [7]. The quality of agreement in the Track-

Parmila and PyORBIT-Parmila benchmarks are similar,

especially if we take into account that here we include

90 meters (MEBT-DTL-CCL) of the SNS linac instead of

40 meters (DTL only) as in Ref. [7].

Proceedings of ICAP2012, Rostock-Warnemünde, Germany MOSBC2

10 Controls and Simulation

ISBN 978-3-95450-116-8

21 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

PY-ORBIT AND XAL ONLINE MODEL

Another benchmark to check the correctness of the

linac part of the PyORBIT code involves the XAL online

model (OM) [8]. OM is an envelope tracking code that

was carefully tested against Parmila, Impact, Trace3D,

and the SNS linac real measurements. The results of

PyORBIT and OM for the SNS Superconducting Linac

(SCL) are shown in Fig. 2. Both simulations include

space charge effects for a peak current of 38 mA. The

agreement between the two codes is very good, especially

if we keep in mind the fundamental differences between

codes: one is a PIC and the other is an envelope-tracking

code.

Figure 2: The transverse and longitudinal rms sizes of the

bunch in the SNS SCL linac simulated with PyORBIT

(red line) and OM (black line) codes.

FUTURE PY-ORBIT DEVELOPMENT

The most urgent need of the linac part of PyORBIT is a

development of more comprehensive RF gap models. We

are going to develop at least two new models. The first

model will reproduce Parmila’s approach [5] with the

same simulation time, and the second one will include the

3D tracking of each particle in the time dependent

electromagnetic field of the cavity. The second model will

slow down the simulations, but it will allow verification

of the simplified approaches.

Another addition will be a collimation module that will

be moved from the original ORBIT. It will be shared with

the ring related part of PyORBIT, and it will provide the

loss accounting for the linac models. It also can be used

for a design of collimation systems at SNS.

The development of the new space charge modules will

depend on available manpower and a real necessity in

parallel calculations.

CONCLUSIONS

Linac beam dynamics simulation capabilities have been

successfully implemented into the PyORBIT code, which

was previously restricted to rings and transport lines. The

new linac part has been successfully benchmarked against

Parmila and the XAL Online Model. The simplified RF

cavity model and a non-scalable parallel 3D space charge

solver will be supplemented with more realistic and

effective models.

PyORBIT is an open source code, and it can be

downloaded from the Google project hosting [9]

ACKNOWLEDGMENT

Author is grateful to A. Aleksandrov and C. Allen for

help with the Parmila and the XAL online model

simulations during the benchmarks.

ORNL/SNS is managed by UT-Battelle, LLC, for the

U.S. Department of Energy under contract DE-AC05-

00OR22725.

REFERENCES

[1] J. Stovall, et al., “Expected Beam Performance of the SNS

Linac,” Proc. of the 2001 Particle. Accelerator Conference,

Chicago, Ill., June 18-22, 2001, p. 446.

[2] J.H. Billen and H. Takeda, PARMILA Manual, Report

LAUR-98-4478, Los Alamos, 1998 (Revised 2004).

[3] A. Shishlo, J. Holmes, and T. Gorlov, “The Python Shell

for the ORBIT code”, Proc. of ICAP ’09, THPSC052

(2009); http://www.JACoW.org

[4] T. Gorlov, A. Shishlo, “Laser stripping computing with the

Python ORBIT code”, Proc. of ICAP ’09, TH3IOPK03

(2009); http://www.JACoW.org

[5] T. P. Wangler, “RF Linear Accelerators”, (Wiley-VCH

Verlag GmbhH & Co, 2008), 209

[6] O. D. Kellogg, Foundations of Potential Theory, (Dover,

New York, 1953), 192.

[7] B. Mustapha, “First Track Simulation of the SNS Linac,”

LINAC’06, Knoxville, TN 2006, TUP076, p. 432 (2006);

http://www.JACoW.org

[8] http://sourceforge.net/projects/xaldev/

[9] http://code.google.com/p/py-orbit/source/checkout

MOSBC2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

22C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

10 Controls and Simulation

