Keyword: Windows
Paper Title Other Keywords Page
MOM302 Python Software for Measuring Wavelength at Optically Pumped Polarized Ion Source (OPPIS) controls, software, ion, laser 72
 
  • P. K. Kankiya, J.P. Jamilkowski
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Often diagnostic tools are packaged with proprietary software and it is challenging to integrate with native environment. The HighFinesse Angstrom Wavemeter used at OPPIS experiment for laser wavelength measurement is controlled using commercial software not supported by RHIC style controls. This paper will describe the integration of such a complex system  and use of python for cross platform data acquisition.
 
slides icon Slides MOM302 [1.013 MB]  
poster icon Poster MOM302 [1.189 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF111 TANGO Integration of a Specific Hardware through HTTP-server controls, TANGO, power-supply, software 334
 
  • A. Panov, A.A. Korepanov
    BINP SB RAS, Novosibirsk, Russia
 
  MAX IV and Solaris are new synchrotrons third generation. MAX IV synchrotron consist of 1.5 GeV storage ring, 3.0 GeV storage ring and linac; it is located in Lund, Sweden. Solaris synchrotron is a replica of the 1.5 GeV storage ring of the MAX IV project; it is located in Kraków, Poland. Structure of storage rings contains several pulse magnets (kicker and pinger). Control system of pulse power supplies based on LTR crate with several modules (ADC, DAC, input/output registers etc.). LTR crate is product Russian firm L-CARD. LTR crate is crate with integrated controller (ADSP Blackfin BF537) and PLC EP1C30 with direct connection to modules. In order to communicate with crate native LTR-server is used. LTR-server is a Windows application based on use of sockets. Control system of MAX IV and Solaris uses TANGO. For integration LTR-crates in final structure, special software gateway (csMAXIVltr) is used. This gateway is a set of several specific Windows applications implemented by using Qt5 libraries. Gateway allow communicating TANGO- server with crate through built-in HTTP-server. In final structure of control system csMAXIVltr will be work on a Windows virtual machine.  
poster icon Poster MOPGF111 [3.338 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF172 Bringing Quality in the Controls Software Delivery Process software, controls, TANGO, Linux 485
 
  • Z. Reszela, G. Cuní, C.M. Falcón Torres, D. Fernández-Carreiras, G. Jover-Mañas, C. Pascual-Izarra, R. Pastor Ortiz, M. Rosanes Siscart, S. Rubio-Manrique
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The Alba Controls Group develops and operates a diverse variety of controls software which is shared within international communities of users and developers. This includes: generic frameworks like Sardana* and Taurus**, numerous Tango*** device servers and applications where, among others, we can find PyAlarm and Panic****, and specific experiment procedures and hardware controllers. A study has commenced on how to improve the delivery process of our software from the hands of developers to laboratories, by making this process more reliable, predictable and risk-controlled. Automated unit and acceptance tests combined with the continuous integration, have been introduced, providing valuable and fast feedback to the developers. In order to renew and automate our legacy packaging and deployment system we have evaluated modern alternatives. The above practices were brought together into a design of the continuous delivery pipelines which were validated on a set of diverse software. This paper presents this study, its results and a proposal of the cost-effective implementation.
*http://taurus-scada.org
**http://sardana-controls.org
***http://tango-controls.org
****S. Rubio-Manrique, 'PANIC a Suite for Visualization, Logging and Notification of Incidents', Proc. of PCaPAC2014.
 
poster icon Poster MOPGF172 [1.247 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF012 Information Security Assessment of CERN Access and Safety Systems network, controls, PLC, software 713
 
  • T. Hakulinen, X.B. Costa Lopez, P. Ninin, P. Oser
    CERN, Geneva, Switzerland
 
  Access and safety systems are traditionally considered critical in organizations and they are therefore usually well isolated from the rest of the network. However, recent years have seen a number of cases, where such systems have been compromised even when in principle well protected. The tendency has also been to increase information exchange between these systems and the rest of the world to facilitate operation and maintenance, which further serves to make these systems vulnerable. In order to gain insight on the overall level of information security of CERN access and safety systems, a security assessment was carried out. This process consisted not only of a logical evaluation of the architecture and implementation, but also of active probing for various types of vulnerabilities on test bench installations.  
poster icon Poster WEPGF012 [1.052 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF045 Large Graph Visualization of Millions of Connections in the CERN Control System Network Traffic: Analysis and Design of Routing and Firewall Rules with a New Approach network, controls, operation, database 799
 
  • L. Gallerani
    CERN, Geneva, Switzerland
 
  The CERN Technical Network (TN) TN was intended to be a network for accelerator and infrastructure operations. However, today, more than 60 Million IP packets are routed every hour between the General Purpose Network (GPN) and the TN involving more than 6000 different hosts. In order to improve the security of the accelerator control system, it is fundamental to understand the network traffic between the two networks in order to define appropriate routing and firewall rules without impacting Operations. The complexity and huge size of the infrastructure and the number of protocols and services involved have discouraged for years any attempt to understand and control the network traffic between the GPN and the TN. In this talk, we will show a new way to solve the problem graphically. Combining the network traffic analysis with the use of large graph visualization algorithms we produce comprehensible and usable 2D large colour topology graphs mapping the complex network relations of the control system machines and services in a detail and clarity never seen before. The talk integrates very interesting pictures and video of the graphical analysis attempt.  
poster icon Poster WEPGF045 [6.809 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF137 Adopting and Adapting Control System Studio at Diamond Light Source controls, interface, GUI, framework 1032
 
  • M.J. Furseman, N.W. Battam, T.M. Cobb, I.J. Gillingham, M.T. Heron, G. Knap, W.A.H. Rogers
    DLS, Oxfordshire, United Kingdom
 
  Since commissioning, Diamond Light Source has used the Extensible Display Manager (EDM) to provide a GUI to its EPICS-based control system. As Linux moves away from X-Windows the future of EDM is uncertain, leading to the evaluation of Control System Studio (CS-Studio) as a replacement. Diamond has a user base accustomed to the interface provided by EDM and an infrastructure designed to launch the multiple windows associated with it. CS-Studio has been adapted to provide an interface that is similar to EDM's while keeping the new features of CS-Studio available. This will allow as simple as possible a transition to be made to using CS-Studio as Diamond's user interface to EPICS. It further opens up the possibility of integrating the control system user interface with those in the Eclipse based GDA and DAWN tools which are used for data acquisition and data analysis at Diamond.  
poster icon Poster WEPGF137 [4.177 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)