
BRINGING QUALITY IN THE CONTROLS SOFTWARE DELIVERY

PROCESS

Z. Reszela, G. Cuni, C. M. Falcón Torres, D. Fernandez-Carreiras, G. Jover-Mañas, C. Pascual-

Izarra, R. Pastor Ortiz, M. Rosanes Siscart, S. Rubio-Manrique, ALBA-CELLS Synchrotron,

Cerdanyola del Vallès, Spain

Abstract
The Alba Controls Section (ACS) develops and

operates a diverse variety of controls software which is

shared within international communities of users and

developers. This includes: generic frameworks like

Sardana [1] and Taurus [2], numerous Tango [3] device

servers and applications where, among others, we can find

PyAlarm [4] and Panic [5], and specific experiment

procedures and hardware controllers. A study has

commenced on how to improve the delivery process of

our software from the hands of developers to laboratories,

by making this process more reliable, predictable and

risk-controlled. Automated unit and acceptance tests

combined with continuous integration, have been

introduced, providing valuable and fast feedback to the

developers. In order to renew and automate our legacy

packaging and deployment system we have evaluated

modern alternatives. The above practices were brought

together into a design of the continuous delivery pipelines

which were validated on a set of diverse software. This

paper presents this study, its results and a proposal of the

cost-effective implementation.

INTRODUCTION

The ACS designed, constructed and maintain the

control systems required to run the facility. The core

software components of the Alba control systems, like for

example Tango – the middleware framework for building

distributed control systems, Sardana – the scientific

SCADA oriented to the experiment control and Taurus –

the GUI library, are fruits of a collaborative effort of

many institutes including Alba [6]. Peripheral

components, like Tango device servers, Sardana

controllers and macros or Taurus GUIs were either

developed in-house or reused from the public repositories.

Most of them are developed in Python.

Previously, the software development processes were

mainly organized around one-person projects that made it

difficult to conduct design questioning discussions and

limited the knowledge flow. The software testing was

neither formalized nor tried to be automated. This made

the project transfers between the developers more

difficult, for example on a developer leave. Newcomers,

without the complete knowledge of the project, could not

feel confident when introducing a change in the code

without a way of testing it at the unit or at the system

level. In some extreme cases this lead to development

downtime periods, to abandoned projects or simply to

buggy releases. Subversion (SVN) was the standard

version control system (VCS) which did not encourage

working branch-per-feature mode. Untraceable commit

histories were not helping to enter into the project

dynamics. The software packaging and deployment were

done manually what is neither interesting nor motivating

for the engineers. All the above problems and difficulties

were not helping in reducing the long lead time – from the

scientist request to the successful use of the software in

the experiment.

DEVELOPERS COLLABORATION

Almost two years ago the ACS decided to introduce

changes in the software development organization. The

in-house projects were transformed from the individual to

the group-based efforts. Furthermore, in the case of the

two core and initially ACS's internal projects Sardana and

Taurus (started at Alba in the previous decade)

community-driven development and organization models

were introduced. This had an impact on the following

parts of the software development process.

Code Design

Internally, developers were organized in groups of 4-6

members – the Scrum teams [7]. A mixture of senior and

junior developers were selected to build each team. The

knowledge transfer activities became a second plan and

continuous process. Information about the projects,

previously restricted to the privileged project owners,

quickly equalized among the team. Agile design practices

were introduced: avoidance of upfront designs and plans

and promotion of iterative and incremental developments.

The Scrum activities brought many interesting design

discussions that helped to achieve a better quality of the

released products.

In parallel, the Sardana and Taurus project development

and decision-taking was opened to a community

composed mainly by synchrotrons similar to Alba (DESY

in Germany, MaxIV in Sweden Solaris in Poland and

ESRF in France), as well as by other institutions,

companies and individuals (mostly within the Tango

collaboration) who are basing their own developments in

them. All these entities actively participate in the

community activities. The community model requires

remote collaboration tools. Sardana and Taurus are hosted

on the Souceforge [8] platform and use a number of

provided tools (e.g. issue tracker, mailing lists, wikis, etc.)

in the code design processes. Discussions about the

critical improvements and modifications are organized

and formalized around public processes called Sardana

Enhancement Proposal (SEP) and Taurus Enhancement

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF172

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

485 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Proposal (TEP) inspired in similar workflows from the

Python [9] and Debian [10] projects.

Code Control

Since many developers started contributing to the

projects the SVN became a limitation in many ways.

Other systems were evaluated having the following

reasons in mind: easier branching and merging (necessary

in scattered organizations like ours) and easier tools and

workflows for the code validation. Git won this

competition bringing many other benefits such as its

distributed architecture, better performance and the

possibility of much cleaner history of commits with less

effort. Hence Sardana and Taurus projects were migrated

from SVN to Git, and the ACS started using Git for the

newly created internal projects.

Sardana and Taurus branching rules were formalized

according to gitflow [11,12] (Fig. 1). Two main branches

and the core for the project are: the develop branch –

where all the developments take place or get integrated

into and the master branch – which always represents the

latest production-ready state of the project. Each commit

to the master branch gets tagged following the semantic

version system (semver) [13] consisting on three dot-

separated fields: major, minor and patch (Fig 1.).

Increment in the major field indicates backwards

incompatible changes in the API. The minor field

increments when new functionality is added in a

backwards compatible manner. And finally the patch field

increments with the backwards compatible bug fixes.

Other supporting branches are: the feature branches –

where development of the SEPs, TEPs or feature requests

take place, the release branch – the intermediate branch

between the develop and the master states as well as the

hotfix branches where the critical bugs in the master

branch are fixed.

Figure 1: Extract from the Taurus git history

demonstrating use of gitflow and semver rules.

Code Review

Together with collaborative software development,

systematic code review practices were introduced. They

rely on examination and validation of the contribution,

usually done before checking it into the repository. In the

case of the internal projects, lightweight peer reviews had

proven to be a great way of improving the quality of code.

Apart from that they help to equalize the technical

knowledge within the team and reduce the information

silos across the developers. The Sardana and Taurus

projects apply more formal code reviews. All the code

contributions are evaluated on the public forum but only

the integration managers (representatives of each of the

community institutes) are allowed to push the code into

the canonical repository. The only tools used in this

process are just a few git commands and the developers

mailing list. Based on the current experience we can

affirm that the quality of these projects has improved

thanks to the code reviews. At the same time we can

observe that the limited time of the integration managers

is a bottleneck for patch integration.

TESTING

No testing strategy existed for the software projects

developed and maintained by the ACS. SEP5 [11]

established the common testing strategy for Sardana and

Taurus. The following best practices are based on its

results and more than a year experience with software

testing.

Tests should be written before developers start work on

the features that they test. Together, these tests form an

executable specification of the behaviour of the system,

and when they pass, they demonstrate that the

functionality required by the users has been implemented

correctly. The automated test suite should be run by the

continuous integration (CI) service every time a change is

made to the application – which means that the suite also

serves as a set of regression tests.

This strategy applies ideally to new projects, where with

prior selection of the testing technology and the CI

platform, developers could start writing and applying

automatic tests in the process right from the beginning.

However mid or legacy projects, like for example Sardana

and Taurus, require a certain variation of the approach.

The best is to start automating the most common,

important, and high-value use cases of the application.

Based on this selection, “happy path” tests covering these

high-value scenarios should be automated. The rest of the

scenarios should initially be tested manually. They should

be automated only when one discovers that the same

function is tested manually more than a couple of times.

Jenkins [14] was selected as the general CI system for

the ACS projects mainly because of its big community of

users, a broad and continuously growing set of plugins,

and simplicity in setting them up and running.

The main purpose of the CI service is to test the

software on each commit, providing fast feedback to the

developers. Our use of Jenkins was extended to the

unique registry of all the software maintained by the

group. Hence even the projects which are not actively

developed by the group or the external projects have their

corresponding Jenkins jobs. These jobs are not triggered

at each commit but their role is to automate the build

processes and the integration tests with our control

system.

MOPGF172 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

486C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

CONTINUOUS DOCUMENTATION

Sardana and Taurus projects use Sphinx [15] to create

documentation. Sardana and Taurus documentation was

originally hosted on the Alba's internet servers. This setup

required manual builds and deployments on every update.

Mainly due to the work overheads the documentation

update frequency gradually decreased to twice per year,

concurring with the biannual releases.

The documentation build processes of both projects

were adapted to make them independent of specific

libraries e.g. PyTango (Python language binding to

Tango). This was achieved via a custom Python modules

mock generator. Finally, both projects migrated thir

documentation to the Read The Docs (RTD) [16] platform

(Fig. 2), bringing the following benefits:

• Documentation gets built on every commit, early

validating its correctness and notifying developers

about any errors.

• Maintenance of the servers and the necessary

software is outsourced to RTD.

• Several versions of the documentation e.g. stable or

latest are available in a unique place.

• The documentation is available in different formats

e.g. html, pdf, epub and is easily searchable.

Figure 2: Taurus latest documentation available on RTD.

CONFIGURATION MANAGEMENT

The ACS manages all the software under maintenance

with the bliss system [17]. The bliss system, developed by

the ESRF, is a rpm-based packaging and Software

Configuration Management (SCM) tool. It comprises two

applications: the blissbuilder and the blissinstaller, and

centralizes information about the packages and the hosts

in a mysql database. Its main advantages are: the offline

access to hosts' configurations and an intuitive to “non-

packaging experts” graphical way of defining and

creating packages. While bliss has served very well over

its many years of use, it shows limitations when it comes

to automatic package creation and deployment. First, all

the package definition is spread in the bliss database

tables and it is not possible to maintain it in the project

code repository. This limits the creation of the project rpm

package to the bliss system users only. The automatic

package creation is not fully customizable, and requires

modification of the package metadata in the database.

However the biggest limitation of bliss comes with the

configuration management and the automatic

deployments (bliss does not provide a way to configure a

group of hosts neither supports the Windows platform).

While it seems possible to implement all the missing

features in the bliss system (it is written in Python) or

develop the complementary scripts, we decided to

evaluate alternative public and widely used products.

SCM Tools

Many SCM tools exist, with the most popular choices

being Puppet, Chef, Ansible [18] and Salt [19], and all of

them are successfully used in many different

organizations. In the process of comparison we had in

mind the following aspects: precedence was given to free

and open source projects, ideally developed in Python –

the widest spread programming language in the group.

Apart from that the ideal candidate was expected to

support both Linux and Windows platforms in the most

seamless way possible. Definition of the hosts

configuration, and the possibility of applying them to

different groups of hosts was also considered as an asset.

Finally, the simplicity and the smoother learning curve for

the ACS were also considered.

A closer look was given to the two Python based

candidates: Salt and Ansible. They give a possibility to

use the repository integration modules like the ones for

apt, zypper or yum and allow operating system agnostic

definitions of the hosts configurations. Salt architecture is

based on a single master and distributed minions which

exchange messages when necessary. However the use of

minions is optional, and Salt could fallback to execute

commands via ssh if necessary (a mixture of both

solutions in the same system is possible). Ansible and Salt

offer very similar features. Salt could eventually bring

benefits in the future thanks to its higher scalability and

the agent based architecture. In its favour speaks that the

Alba IT Systems Section uses Salt for SCM of the High

Performance Computing Centre of the Alba Synchrotron.

Packaging

Migration from the bliss system to Salt would

eventually require an alternative way of creating software

packages. This seems quite simple in case of the Python

based projects since the standard packaging modules

allow creation of rpm and deb packages for the Linux

platform and exe and msi installers for the Windows

platform. Sardana and Taurus already use distutils [20],

and as a proof of concept creation of the rpm packages

was successfully tested. In case of the Windows platform

the msi format proved to be a better choice than the exe,

since it allows the unattended installations necessary by

the SCM. The migration from bliss would also require

setting up package repositories where the packages would

be uploaded and from where the SCM tool would pull the

packages for installation.

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF172

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

487 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

CONTINUOUS DELIVERY

Agile software development together with the

continuous delivery aims to transform a concept into

working software as fast as possible. Continuous delivery

is based on fully automated, reliable, repeatable and

constantly improving software delivery pipelines. Each

change in the project code should trigger the pipeline

execution and in case of success deliver a deployment-

ready product. The negative result of an intermediate

pipeline stage must break the pipeline execution and be

immediately reported to developers who should stop the

current work and fix the breaking change. Each project

actively developed by the ACS could have its continuous

delivery pipeline, initially comprising three stages:

commit, acceptance and user acceptance. These stages

should be executed sequentially only if the previous stage

ended successfully. Each stage could be divided into

parallel run jobs if necessary.

Based on the experimental implementation of the

pipelines for Taurus (Fig. 3) and Sardana the following

tools and setups are recommended. Jenkins works as the

pipeline orchestrator where each job represents one

pipeline stage. Jobs are interconnected and trigger the

downstream jobs while the pipeline advances.

Figure 3: A proof-of-concept continuous delivery pipeline

of Taurus project.

The commit stage is triggered on each change in the

VCS. The commit stage should run the unit tests of the

project and execute the static code analysis and in case of

success build the software packages. Finally, all the

packages get uploaded to the repository. It is very

important that from now on, all the subsequent stages

always use the same package created in the commit stage.

The acceptance test stage should take place in an

environment as similar to production as possible. This

stage should start from the package deployment to the

acceptance test environment using the SCM, as it would

be deployed to production. If the software works in

production on various platforms e.g. Windows and Linux,

the acceptance tests should also be performed on all of

them. Finally the automated acceptance tests should be

executed. The acceptance tests may require a specific

configuration (also maintained under the VCS) which

should be applied to the acceptance test environment

before the tests execution. Preparation and maintenance of

the acceptance test environments may be a tedious and

error prone job. Execution of the acceptance tests in the

Docker [21] containers showed to be a great solution to

these problems. Docker is a platform for developing,

shipping, and running applications using the container

virtualization technology. The idea behind it is to

maintain the Docker images for each of the acceptance

test environments and spin them up on demand of the

pipeline execution. This solution provides lightweight,

reliable and isolated testing environments occupying the

resources only when needed. Docker integrates well with

Jenkins via plugins and one of them allows to seamlessly

use Docker containers as the Jenkins slave nodes.

Successful acceptance stage should notify developers

that the package is ready for the user acceptance tests.

These tests should be executed manually following a

well-defined testing scenarios and it is very important to

do that in an environment as similar to production as

possible. While the tests must be executed manually the

preparation of the testing environment should be

automated thanks to the SCM. Based on the user

acceptance test results a decision is taken if a package is

production ready or not. Of course executing the user

acceptance tests at each commit could become expensive,

so this stage should be done on demand.

NEXT STEPS

Sardana and Taurus projects could already apply the

continuous delivery strategy to their biannual releases.

Ideally their pipelines should be accessible by the whole

community of developers, both in and outside of ALBA.

This may be solved by using cloud providers for the

continuous delivery tools, but it has not been investigated

yet. While the decision of the eventual migration to the

new SCM is blocked by still very shallow knowledge

about the software packaging, it also depends on the

upgrade of the general platform of the Alba control

system. Online code review platforms may bring new

quality to the current review processes, making them

more accessible to the developers and reducing the

workload on the integration managers.

ACKNOWLEDGEMENT

We would like to thank the rest of the Alba Controls

Section and especially to Roberto Homs, Daniel Roldan,

Jordi Andreu, Fulvio Becheri and Sergi Blanch, and the

Taurus and Sardana community members for their active

work in this project. We would also like to thank the IT

Systems Section of Alba and especially to Sergi Puso,

Marc Rodriguez, Mario Diaz and Antoni Pérez as well as

the MIS Section and especially to Daniel Salvat for their

valuable feedback.

MOPGF172 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

488C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Systems Engineering, Project Management

REFERENCES

[1] T. Coutinho et al. “Sardana, the Software for

Building SCADAs in Scientific Environments”,

ICALEPCS2011, Grenoble, WEAAUST01.

[2] C. Pascual-Izarra et al. “Effortless Creation of

Control & Data Acquisition Graphical User

Interfaces with Taurus”, ICALEPCS 2015,

Melbourne, THHC3O03.

[3] Tango website: http://www.tango-controls.org

[4] S.Rubio-Manrique et al., “Extending Alarm Handling

in Tango.”, ICALEPCS 2011, Grenoble,

MOMMU001.

[5] S.Rubio-Manrique et al., "PANIC, a suite for

visualization, logging and notification of incidents.",

PCaPAC 2014, Karlsruhe, FCO206.

[6] Alba website: http://www.albasynchrotron.es

[7] G. Cuni et al. “Introducing the SCRUM Framework

as Part of the Product Development Strategy for the

ALBA Control System”, ICALEPCS 2015,

Melbourne, MOD3O04.

[8] Sourceforge website: https://www.sourceforge.net

[9] Python Enhancement Proposals:

https://www.python.org/dev/peps

[10] Python Enhancement Proposals:

http://dep.debian.net/deps/dep0

[11] Sardana Enhancement Proposals:

http://sf.net/p/sardana/wiki/SEP

[12] Gitflow branching model website:

http://nvie.com/posts/a-successful-git-branching-

model

[13] Semantic versioning system website:

http://http://semver.org

[14] Jenkins website: http://jenkins-ci.org

[15] Sphinx website: http://sphinx-doc.org

[16] Read The Docs website: http://readthedocs.org

[17] The ESRF Beamline Control Unit website:

http://www.esrf.eu/Instrumentation/software/beamlin

e-control/BLISS

[18] Ansible website: http://www.ansible.com

[19] Salt website: http://saltstack.com

[20] Distutils documentation website:

https://docs.python.org/2/library/distutils.html

[21] Docker website: http://www.docker.com

Proceedings of ICALEPCS2015, Melbourne, Australia MOPGF172

Systems Engineering, Project Management

ISBN 978-3-95450-148-9

489 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

