
LARGE GRAPH VISUALIZATION OF MILLIONS OF CONNECTIONS

IN THE CERN CONTROL SYSTEM NETWORK TRAFFIC:

ANALYSIS AND DESIGN OF ROUTING AND FIREWALL RULES

WITH A NEW APPROACH

Luigi Gallerani, CERN, Geneva, Switzerland

Abstract
The CERN Technical Network (TN) TN was intended

to be a network for accelerator and infrastructure
operations. However, today, more than 60 million IP
packets are routed every hour between the General
Purpose Network (GPN) and the TN, involving more than
6000 different hosts. In order to improve the security of
the accelerator control system, it is fundamental to
understand the network traffic between the two networks
and to define new appropriate routing and firewall rules
without impacting operations. The complexity and huge
size of the infrastructure and the number of protocols and
services involved, have discouraged for years any attempt
to understand and control the network traffic between the
GPN and the TN. In this paper, we show a new way to
solve the problem graphically. Combining the network
traffic analysis with the use of large graph visualization
algorithms we produced usable 2D large color topology
maps of the network identifying the inter-relations of the
control system machines and services, in a detail and
clarity, not seen before.

INTRODUCTION

Improving the security between the GPN and the TN,
where accelerator systems and control systems run, is a
priority for the infrastructure experts in the CERN Beams
Department, Control Group, and the Computer Security
team.

The separation between the GPN and the TN is defined
by routing rules controlled by the Network Operations
database (NetOps or LanDB). Only GPN hosts that are
TN-TRUSTED are able to connect to the TN, and only
TN hosts that are GPN-EXPOSED can communicate with
the GPN. From the CERN NetOps records, routing tables
are generated and loaded in to the routers.

We have today more than 1000 machines that are in the
TRUSTED or EXPOSED lists with a justified operational
reason. Around 6000 machines are involved in the
communications between the two networks. The
TRUSTED – EXPOSED list mechanism is clearly too
weak compared to the modern network protection
standards. The goal is to have in place well defined
firewall and routing rules and have full control on the
traffic between TN and GPN. To achieve that on a large
control system in operation, it is fundamental to and
understand all the relations and dependencies between the
system involved.

A good starting point is the record of the real traffic on
routers.

RECORDING THE TRAFFIC

A large set of network restrictions rules can be easily
defined by the knowledge of the system. However, this is
not sufficient. With hundreds of different interconnected
systems running on the TN and GPN, it is almost
impossible to predict all the relations and dependencies
between hosts and ports by the knowledge of the system
functionality. The risk of compromising the connectivity
of a running system because of a too strict or wrong
firewall rule is what the Controls group wants to avoid
most. Routers between the TN and GPN can record the
traffic live producing as output text files with the
following fields

Timestamp Protocol Packets count Size bytes

Source host Source port Dest host Dest port

DATA PROCESSING

Classical Approach by Statistics

In 1 hour, 60 million connections are recorded. 1.4
billion lines per day are the source of the analysis.
Statistics, filtering, grouping and sorting are the obvious
approaches for useful information extraction from a large
dataset. For example it is easy to identify by queries the
most connected hosts, the most used port between hosts of
name N, the top 10 interconnected hosts and so on.

Figure 1: One hour of UDP-TCP traffic between CERN
Technical Network and General Purpose Network plotted
and clustered using Fruchterman Reingold algorithm.

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF045

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

799 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

However, finding anomalies in the network
connections, searching for hidden dependencies between
multiple interconnected systems, getting the flow of
traffic from histogram and results from statistics and
queries are not easy or practical at all.

Graphs are the ideal mathematical tool to display host
interconnections. Hosts are shown as a node N. Each
connection is an edge E with source-dest ports as edge
property. Packet size or the connection count is the weight
of the edge. Timestamps can be used as the 4th dimension
to display the evolution of the graph in time. Protocols
such as TCP or UDP can be easily separated or plotted
with different graphic like style or colored edges.

To give an example, two simple recorded connections
between 3 host, two clients and one server, Figure 2 can
be converted to Graphiz “.dot” language [1] with:

strict digraph G {
hostA -> servA [label="80 to 36642"

bytes=85920 color="red" flows=50]
servA -> hostB [label="58139 to 46113" bytes=628

color="blue" flows=6]
}

Graphs directly generated from the recorded data have
too many edges. Dot language interpreters automatically
merge all the nodes entries with the same ID, but it is not
immediate to do the same for the edges. We wrote a
custom graph pre-processor script to perform the
following operations and generate different types of sub-
graphs in .dot format ready to be plotted.

1. Merge and count connections together hosts and port
numbers (weighted edges)

2. Delete already defined connections (strict graph)

3. Ignore directions (undirected graph)
4. Separate in different graph for UDP and TCP

To plot the obtained .dot graph "Gephi" [2] was used on
“Debian 8” with “pekwm”[3] as X windows manager
(Gephi is unstable on sophisticated windows managers
like gnome/kde). Figure 3 shows the first graph obtained
without edge labels and with random node positions. The
complexity of the problem is evident, so additional steps
are required to get better results.

GRAPH PROCESSING

The first graphical computational step is called
clustering [4] and Gephi already implements many
different algorithms. Starting from a random node
position graph like the one in Figure 3 a filter on nodes
degree like K>3 is applied, then the Reingold
Fruchterman [5] clustering process is started, and only at
the end of the process, the filter is removed. A sequence
of the clustering process is shown in Figure 4. The nodes
with high degree K are kept in the center, and clusters of
isolated hosts are moved to the edges.

Neighbours are discovered with the Chinese Whisper
algorithm [6] so that nodes in the same cluster have the
same colors and are easily identified. Finally, labels are
applied. A full graph processing with this method is
shown in Figure 1. In this article we show graphs with
masked labels or replaced with generic ones.

Figure 2: Direct graph automatically generated from
the .dot language above using Graphiz and Gephi.

Figure 3: One hour of traffic: ~6K nodes with random
position interconnected by 60M edges. Each node is an
host, each edge is a TCP or UPD connction recorded.

Figure 4: Clustering process sequence with Reingold
Fruchterman algorithm followed by neighbor discovery
colors by Chinese Whisper algorithm and label of nodes
with high K degree.

Graphs, Conversion in .dot Language

Clustering and Neighbor Discovery

Graph Pre-Processor

First Graph: Plotting 60M Nodes

WEPGF045 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

800C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Management, Analytics & Visualisation

Once the main clusters of machines are identified,
smaller and full detailed sub-graphs can be created. With
the combined usage of the pre-processor and the filtering
by queries inside Gephi, it is possible to generate full
resolution sub-graphs like the one shown in Figure 5
where the TCP traffic generated in 24 hours by more than
400 development virtual machines is clearly plotted. To
read all the information we print the high resolution graph
in large format (ARCH E size). Using different pre-
processor configurations, a full graph of port-to-port
interconnections for same cluster is generated: Figure 6

Multiple graphs can also be combined together. A graph
of host relations from NetOps has been combined with the
recorded traffic graph. Hosts in the same network group
are seen as a single large node. Connections of the similar

types are also grouped together in a larger edge line
proportional to the enumeration, as visible in Figure 7

SECURITY FROM GRAPH ANALYSIS

Graph analysis returned highly valuable information
that we converted in practical actions to improve the
network security. For example, we identified and removed
hidden dependencies for terminal servers, forgotten port
scanners, wrong inclusions of development machines in
operational PLC set. We moved the monitoring cluster out
of the TN for more then 500 TRUSTED hosts. We have
started to define firewall rules based on the analysis.

CONCLUSION

We used large graphs visualization techniques to plot
million of recorded connections for machines involved in
the controls system network. With the results we have
been able to identify and fix many issues, have a view of
all the dependencies and a new tool in place to define
firewall and routing rules. This method can be easily
adapted and widely used by the community involved in
large control system network administration and
protection.

REFERENCES

[1] Graphviz library www.graphviz.org
[2] Gephi Open Graph Viz platform gephi.github.io
[3] Pekwm Win manager www.pekwm.org
[4] V. Dongen, “Graph Clustering by Flow Simulation”

PhD Thesis, University of Utrecht, The Netherlands.
[5] T. Fruchterman,;E. Reingold "Graph Drawing by

Force-Directed Placement", Software – Practice &
Experience (Wiley).

[6] C. Biemann, "Chinese Whispers an Efficient Graph
Clustering Algorithm" University of Leipzig.

Figure 7: Combination of recorded data full resolution
graphs with Network database info in a weighted edge
graph where similar nodes are grouped together.

Figure 5: Cluster of around 400 nodes showing controls
development machines dependencies in a strict direct
graph over 24 hours in full resolution.

Figure 6: Port to port subgraph of the virtual machine
cluster allows easily identifying the interconnections.

Sub-Graphs at Full Resolution

Multi Graph Integration

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF045

Data Management, Analytics & Visualisation

ISBN 978-3-95450-148-9

801 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

