
ADOPTING AND ADAPTING CONTROL SYSTEM STUDIO AT
DIAMOND LIGHT SOURCE

M. Furseman, N. Battam, T. Cobb, I. Gillingham, M. T. Heron, G. Knap, W. Rogers,
Diamond Light Source Ltd, Oxfordshire, UK

Abstract
Since commissioning, Diamond Light Source has used

the Extensible Display Manager (EDM) to provide a GUI
to its EPICS-based control system. As Linux moves away
from X-Windows the future of EDM is uncertain, leading
to the evaluation of Control System Studio (CS-Studio) as a
replacement. Diamond has a user base accustomed to the
interface provided by EDM and an infrastructure designed to
launch the multiple windows associated with it. CS-Studio
has been adapted to provide an interface that is similar to
EDM’s while keeping the new features of CS-Studio avail-
able. This will allow as simple as possible a transition to
be made to using CS-Studio as Diamond’s user interface to
EPICS. It further opens up the possibility of integrating the
control system user interface with those in the Eclipse based
GDA and DAWN tools which are used for data acquisition
and data analysis at Diamond.

INTRODUCTION
Diamond Light Source is a third generation light source,

comprising of an injection chain of 100 MeV linac, 3 GeV
booster ring and a 561.6 m 3 GeV storage ring [1]. There
are currently a total of 33 photon beamlines which are either
completed, in construction, or planned. All control system
parameters are exposed via the Experimental Physics and
Industrial Control System (EPICS) [2], and GUIs for these
are realised with the Extensible Display Manager (EDM) [3],
which is widely used in the accelerator community for mon-
itoring and controlling live process variables (PVs).

EXISTING INFRASTRUCTURE
At Diamond Light Source we use EDM extensively across

the Accelerator complex and Photon Beamlines, which al-
lows us to provide a common interface to many core com-
ponents such as vacuum systems and motors. Typically a
user will access synoptic overviews of a beamline or the
machine areas from the Diamond Launcher, an application
that resembles a ‘start menu’ with Diamond specific content.
From the synoptic screen a user will access more detailed
information by clicking through a series of panels.

All the panels are stored on a read only file system which
contains multiple versions of releases for different modules.
EDM is started from a script invoked by the launcher which
sets environmental variables to point at the correct versions
of dependencies for any particular synoptic screen. A new
instance of EDM is run for each synoptic allowing them to
depend on different modules. In total around 7000 EDM
screens are installed at Diamond with many of these being
auto-generated.

Not all displays in Diamond are thin clients that interact
only with EPICS PVs; some require additional processing to
provide the user with interactive information or need to cal-
culate values based on a physics algorithm. It is not plausible
to do these processes in EDM and is sometimes difficult to
achieve them in an IOC. These are typically implemented in
PyQT and interact with EPICS using the Cothread Python li-
brary [4]. Developing these GUIs is time consuming and can
provide an inconsistent feel to the overall operator interface.

MOTIVATION FOR MOVING TO
CONTROL SYSTEM STUDIO

While Diamond has been using EDM since it began opera-
tion, the long term prospects for the application are uncertain.
As Linux distributions move away from X toWayland, EDM
will lose support for Motif, the widget toolkit it is built on.
While it is plausible that EDM could be written to use a more
modern toolkit, this transition provides the opportunity to
look for a new GUI tool for creating operator interfaces that
are based on more modern technologies and provide more
features.

Control System Studio [5] (CS-Studio) is written in Java
and based on the Eclipse Rich Client Platform (RCP). It
provides a modular plugin architecture that allows exten-
sions to be easily contributed in the form of plugins. This
architecture has given rise to a number of features that can
be bundled with the application to tie together a suite of
control system tools into a single interface; an example of
one of these plugins is the Data Browser, which can be used
simultaneously as a replacement for the ‘Striptool’ and the
‘Archive Viewer’. Eclipse RCP is capable of running on
multiple platforms including Linux and Windows. While
our control interfaces run on Linux workstations, this does
remove a barrier in providing control system information to
office users with Windows workstations.
CS-Studio is the choice for many new sites [6–8]. This

increases confidence that the application will benefit from
community maintenance in the future. Indeed, there has
been an average of 7.82 commits a day to the master branch
since 2007 [9].
Yet another benefit of moving to CS-Studio is that an

automated conversion framework already exists for convert-
ing EDM layout files (EDL) to CS-Studio’s XML based
layout files (OPI). With so many EDL files automated con-
version is a necessity if Diamond is to transition its entire
GUI infrastructure in a reasonable time scale. The conver-
sion framework is also easily extensible allowing developers
to add unimplemented features.

WEPGF137 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1032C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



On photon beamlines, Diamond uses tools developed in
house that provide Generic Data Acquisition (GDA) and a
Data Analysis Workbench (DAWN) [10]. These tools are
developed for external users coming to site to be able to
collect and analyse their data without having to understand
how to interact with the underlying control system. Both
applications provide a GUI which is also implemented with
the Eclipse RCP; due to its modular nature it is easy to share
components between applications. Using CS-Studio as an
interface to the control system further affords the possibility
of developing shared software.

CHALLENGES IN SWITCHING
While the decision to use CS-Studio on its merits seems

valid, it was necessary to determine if there were any issues
that would prevent successful adoption.

Performance
CS-Studio was expected to run more slowly than EDM,

which was written to run on computers with significantly
fewer resources and less power. To determine if there is a big
enough difference in performance to cause issues for users, a
series of tests were carried out to asses this and other issues
of usability.
In general the time taken to open screens was perceived

as acceptable with a few notable exceptions; screens which
had been using the ‘Symbol’ widget in EDM were very slow
to open. To work around this Diamond has implemented
a custom CS-Studio Symbol widget that has much better
performance, but is limited to rendering static rasterized
images. Producing those images is part of the post-process
conversion process which is described later. In order to
achieve this speed CS-Studio does use multiple cores, but
this is acceptable given the computers in use at Diamond.
CS-Studio uses considerably more memory than EDM.

The Java Virtual Machine (JVM) imposes a fixed upper limit
on the available memory when the application is launched.
In practice CS-Studio quickly consumes all the memory
available to it and then relies on Garbage Collection (GC) to
free memory when required. This presents a problem only
when the required memory exceeds the allowance at which
point CS-Studio will consume a lot of CPU resource before
eventually crashing the JVM. This is satisfactorily managed
by setting an appropriate value for the memory usage; 2 GB
is sufficient for most use cases at Diamond.
A machine operator’s shift will often cover 8 hours of

continuous GUI use. Due to the complexity and time crit-
ical nature of machine control it is not acceptable for the
application to crash during this period. Long duration tests
have been completed that give us confidence that an instance
of CS-Studio can be left running over multiple days with-
out crashing or slowing down. CS-Studio does crash occa-
sionally, however these crashes do not seem to occur more
frequently than were experienced with EDM.

Technology and Interface
CS-Studio is based on the Eclipse RCP, which is itself built

on a number of other technologies which support the mod-
ular plugin architecture such as OSGi. This framework is
powerful, but it is also dense and complex making it difficult
to understand. Attempting to use the framework to do things
outside the Eclipse paradigm is tricky. TheMaven [11] based
build system also provides those who want to do command
line builds of CS-Studio with a steep learning curve.
As SWT is responsible for the widget toolkit in Eclipse

RCP, the overall look and feel of the application is defined
by the native widgets that it is built upon. Many of the
widgets available for users to create their own displays in
CS-Studio are implemented in Draw2D and therefore do not
share the same appearance as the framework that surrounds
them. This has the advantage that displays look very similar
on different platforms, but the disadvantage that panels may
not be consistent with native applications.
So far, none of the issues described have been sufficient

to prevent Diamond’s adoption of CS-Studio. However we
have many users of EDM whose workflow uses stand-alone
windows that are handled by the Linux window manager.
CS-Studio presents users with a workbench, a single large
window with tiled panes that can contain other windows
as shown in Fig. 1. As we are automatically converting
our panels they will still retain the EDM layout, which has
been designed to be used as a proliferation of many small
panels. While it is possible to detach one of these panels
in CS-Studio, the new window behaves differently to the
EDM windows we have now. There are distinct differences
in behaviour with regard to Linux virtual desktops; these
are heavily used in the standard workflow of the Diamond
operators. The workbench based layout of CS-Studio is also
restrictive to those who wish to move panels across multiple
physical displays. These limitations, combined with the
poor display of many of our existing screens due to their
small size, present an issue that needs to be resolved before
Diamond could adopt CS-Studio for our operator interfaces.

MODIFICATIONS TO CS-STUDIO
The main purpose behind modifying CS-Studio was to

present an interface that would be familiar enough to our
users that they could transition from EDM painlessly. To
do this the core modification we have made is the ability to
display CS-Studio panels in an SWT Shell, which is not inte-
grated into the Eclipse window and so can be manipulated in
the way we require. These changes have now been merged
into the master branch of CS-Studio and will be available
following the 4.2 release [12]. The changes provide users of
CS-Studio with the ability to choose a ‘Standalone Window’
either when right clicking on an OPI file or creating screens
which open related displays.

Although not directly a part of Eclipse RCP, it is still
possible to tie elements such as the right click menu to the
standalone window, allowing it to interact with the work-
bench window. This is useful if, for instance, a user wishes

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF137

User Interfaces and Tools

ISBN 978-3-95450-148-9

1033 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



CS-Studio EDM → CS-StudioEDM

Figure 1: Converted EDM panels do not fit optimally into the default CS-Studio workbench.

to see more detailed information about a process variable
that would normally open in the workbench.
There remain a few issues with the standalone window

framework as it exists, and we hope to find mutually accept-
able solutions to these for the variety of use cases CS-Studio
enjoys at different sites. It is possible to open workbench
based operator panels and also standalone panels in the same
instance of CS-Studio. This could be confusing for a user
who may not understand why two windows which appear
similar behave in different ways. One possible solution to
this is to restrict all open panels to either the view or shell-
based method based on a runtime preference. Another solu-
tion is to contribute the shell as an optional ‘feature’ which
allows maintainers of CS-Studio at each site to decide if they
would like this functionality when building their Eclipse
product.

CONVERSION OF EDM SCREENS
Our entire transition process is based around the ability to

run existing EDM screens in CS-Studio without significant
human intervention. To do this we require a good quality
automated conversion from EDL files to the new OPI file
format. CS-Studio includes a framework for a widget-by-
widget conversion of EDM files, which we have extended
to support more widgets and improve accuracy. Some logic
contained in EDM screens cannot be reproduced by this
method, so we have written post-processing scripts to alter
the produced XML files. We have also created two specific
EDM compatibility widgets to extend the CS-Studio toolset.

Symbol Widget
The Symbol widget shows a section of embedded panel

depending on the value of a PV. Diamond has a site wide
temperature monitoring GUI that has 1605 symbol widgets.
With EDM the performance of these panels is acceptable,
however with CS-Studio it is exceptionally poor. By creating
a custom widget able to show sections of a rasterized image
we have been able to demonstrate significantly better perfor-
mance. There are a few edge cases that do not work with
this approach, e.g. animated symbols, or embedded symbols
that are very different resolutions to their containers, but for
the vast majority of symbols this widget works well.

Menu Mux Widget
The Menu Mux widget in EDM changes one or more

dynamic macro values in response to a user’s control value
selection. A new widget, based on the SWT combobox,
was created for CS-Studio which offers similar functionality
using local PVs. CS-Studio does not support dynamic macro
values so these must be substituted with local PVs. The
converter is unable to determine which macros referenced
in a Menu Mux widget need to be changed to local PVs
so they can be used by other controls on the OPI, therefore
this update must be performed as part of a whole-file post-
process step.

Post-Processing
Due to the difference in behaviour between CS-Studio and

EDM not all widgets can be converted directly; their context
in the panel determines how they should be converted. Any
part of the conversion that has knowledge about the inter-
action between widgets is not supported by the CS-Studio
converter so we have implemented this in a post process-
ing Python script. As well as the Symbol and Menu Mux
widgets there are a few other differences in behaviour we
address with post processing: CS-Studio requires that a wid-
get with a click action be above all other widgets in order
to receive the click event; it also clips widgets that lie out-
side of a grouping container. We solve these by adding an
invisible click widget on the top of the stack, and resizing
the grouping container to fit the widgets respectively.

FAST ACQUISITION DATA-BROWSER
PLUGIN

Diamond has a fast acquisition (FA) data stream that
records data from 255 BPMs at 10 kHz into a 30 TB ring
buffer. The data is accessed via a socket with clients request
decimated data in bins of either raw, 64 or 16384 decima-
tions [13]. To get this data into CS-Studio a FA data source
was added which allows us to query the status of live BPM
data by simulating a PV as well as historic archived data.
The decimated data is returned with mean, minimum and
maximum values, the display of which is supported by Data
Browser. Using this setup it is now trivial to plot slow acqui-
sition EPICS data alongside fast acquisition data, something

WEPGF137 Proceedings of ICALEPCS2015, Melbourne, Australia

ISBN 978-3-95450-148-9

1034C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Tools



that is very useful when determining how fast beam motion
is affected by other parameters.

BEAMLINE USERS
On photon beamlines workstations Diamond hosts a vari-

ety of internal and external scientists with a range of experi-
ence using controls GUIs. Often EDM’s usage paradigm can
create a confusing proliferation of windows which are diffi-
cult to organise once they cover the available monitor real
estate, especially as a beamline typically wants to control the
state of multiple items of hardware simultaneously. For this
reason we are currently developing a beamline GUI frame-
work that takes advantage of CS-Studio’s ability to control
the layout of panels in line with the more conventional way
of using an Eclipse RCP based application. Shared compo-
nents between photon beamlines and accelerators such as
vacuum and motors will be required to work appropriately
in either usage paradigm.

PLANNED CS-STUDIO
INFRASTRUCTURE

Any production release used for controls at Diamond must
be built from a script without an internet connection, ensur-
ing repeatable builds in the future. It is not practical or even
permissible to download all the p2 repositories that the build
depends on due to their large size. Instead, this has been
achieved by archiving a clean Maven repository used for the
build in order to gather the relevant dependencies. This re-
sults in a minimal set of dependencies required for an offline
build.

All production modules in Diamond are placed in a read
only file system with versioned releases. Currently module
maintainers manage environmental variables which allow
EDM to pick up different versions of EDL files they have
dependencies on; each set of dependencies requires a new
instance of EDM. Due to the large footprint when running
CS-Studio we can not start a new instance for every set
of dependencies, fortunately Eclipse provides a method of
redirecting paths within the RCP environment to filesystem
paths which are called ‘share_links’. Part of our modifica-
tions to CS-Studio have been allowing additional command
line parameters to modify the links in a running instance of
CS-Studio, thereby allowing a module owner to keep a list
of dependencies which is automatically updated each time a
user opens a newly released panel.

INTEGRATION WITH DAWN AND GDA
Running CS-Studio on photon beamline workstations

opens a significant avenue of collaboration opportunities

with the other software groups at Diamond who are also
developing Eclipse RCP applications for use on data acqui-
sition and analysis [14]. At present the Diamond build of
CS-Studio contains a version of the graphing widget used
in DAWN which has been integrated for use in CS-Studio
displays.

ACKNOWLEDGMENTS

The authors would like to thank Friederike Jöhlinger for
building the fast archiver plugin as a summer placement
project. We would also like to thank the CS-Studio collabo-
ration for their receptiveness to the changes we have made
to their application.

REFERENCES
[1] R. P. Walker, “Commissioning and Status of the Diamond

Storage Ring”, APAC (2007).

[2] M. T. Heron et al., “The Diamond Light Source Control
System”, EPAC (2006).

[3] J. Sinclair, http://ics-web.sns.ornl.gov/edm/.

[4] M. G. Abbott et al., “Diverse Uses of Python at Diamond”,
PCAPAC (2008).

[5] J. Hatje et al., “Control System Studio (CSS)”, ICALEPCS
(2007).

[6] F. Arnaud et al., “ITER Contribution to Control System Stu-
dio (CSS) Development Effort”, ICALEPCS (2013).

[7] M. Giacchini et al., “The Control System of Spes Target:
Current Status and Perspectives”, ICALEPCS (2009).

[8] T. Satogata et al., “ESS Controls Strategy and the Control
Box Concept”, PCaPAC (2010).

[9] https://github.com/ControlSystemStudio/
cs-studio/graphs/contributors

[10] M. Basham et al., J. Synchrotron Rad. 22, 853-8, (2015).

[11] https://maven.apache.org/.

[12] https://github.com/ControlSystemStudio/
cs-studio/pull/1066

[13] M. G. Abbott, “A New Fast Data Logger and Viewer at Dia-
mond: the FA Archiver”, ICALEPCS (2011).

[14] M. W. Gerring, “Open Source Contributions and Using Osgi
Bundles at Diamond Light Source”, WEB3O01, these pro-
ceedings, ICALEPCS’2015, Melbourne, Australia (2015).

Proceedings of ICALEPCS2015, Melbourne, Australia WEPGF137

User Interfaces and Tools

ISBN 978-3-95450-148-9

1035 C
op

yr
ig

ht
©

20
15

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


