
www.cells.es

Click to edit Master title style

• Bliss system (by ESRF) was compared with
Software Configuration Management (SCM) tools
in terms of automated packaging and deployments

• Bliss pros: intuitive for non-packaging-experts,
offline access to hosts’ configurations

• Bliss cons: restricted to bliss users only, poor
automation of building and deploying packages,
not for Windows

• Sardana and Taurus migrated their documentation
to Read The Docs (RTD)

• Documentation is build on every commit
• Maintenance of the servers and the necessary

software is outsourced to RTD
• Several version of the docs e.g.

stable or latest are available
• Docs are available in different

formats: html, pdf, epub

BRINGING QUALITY IN THE CONTROLS SOFTWARE
DELIVERY PROCESS

Z. Reszela, G. Cuní, C. M. Falcón Torres, D. Fernández-Carreiras, G. Jover-Mañas, C. Pascual-Izarra,
R. Pastor Ortiz, M. Rosanes Siscart, S. Rubio-Manrique (ALBA-CELLS Synchrotron, Spain)

 Alba is a 3rd generation synchrotron located near Barcelona, Spain. It comprises accelerators and 7 beamlines and was successfully commissioned in 2012. Nowadays all its
beamlines host user experiments regularly. At the same time 2 more beamlines are under construction and it is planned to expand the facility even more in the near future.
 The Alba Controls Section develops and operates a diverse variety of controls software which is shared within international communities of users and developers. This
includes: generic frameworks like Sardana and Taurus, numerous Tango device servers and applications where, among others, we can find PyAlarm and Panic, and specific
experiment procedures and hardware controllers. A study has commenced on how to improve the delivery process of our software from the hands of developers to
laboratories, by making this process more reliable, predictable and risk-controlled.

Introduction

www.albasynchrotron.es www.sardana-controls.org www.taurus-scada.org www.tango-controls.org www.tango-controls.org/community/projects/panic

• Sardana and Taurus projects could already apply
the CD strategy to their biannual releases.

• Ideally their pipelines should be accessible by the
whole community of developers.

• Try online providers for the continuous
integration/delivery tools.

• Try online code review platforms. It may bring
new quality to the current review processes,
making them more accessible to the developers
and reducing the workload on the integration
managers.

Next steps

• Code repositories were migrated from SVN to GIT
• Easier branching and merging
• Easier tools and workflows
• Distributed architecture
• Better performance
• Cleaner history of commits

with less effort

SEMANTIC VERSIONING
Given a version number MAJOR.MINOR.PATCH,
increment the:
1. MAJOR version when you make incompatible

API changes
2. MINOR version when you add functionality in a

backwards-compatible manner
3. PATCH version when you make backwards-

compatible bug fixes

• Python packaging libraries e.g. distutils
builds rpm, deb, msi packages

• msi allows unattended installations
necessary for SCM

• Package repositories (repo) e.g. yum for
rpm, needs to be setup

• Proof-of-concept Taurus CD pipeline:
builds rpm and msi, uploads them to
the repo and SCM pulls from the repo

Packaging

Code control Code design

In
te

rn
a

l p
ro

je
ct

s

• Single-person projects were passed to Scrum teams of
4-6 developers

• Mixture of senior and junior developers
• Scrum activities brought interesting design discussions
• Avoid upfront designs and plans
• Promote iterative and incremental developments

C
o

m
m

u
n

it
y

p
ro

je
ct

s

• Sardana & Taurus decision-taking was opened to a
community

• Sourceforge remote collaboration tools e.g. mailing
list, wikis, issue tracker helps in the code design

• Critical improvements and modifications are
organized and formalized around public processes:

Testing
• SEP5 established the common testing strategy for

Sardana and Taurus.

• Mid or legacy projects should start automating
the most common and important use cases.

• The rest of the scenarios should initially be
tested manually.

• Tests should be written before developers start
work on the features that they test.

• The automated test suite should be run by the
Continuous Integration service on every commit.

Continuous Delivery
• Agile & Continuous Delivery (CD) aims to transform a

concept into a working software as fast as possible.
• CD is based on fully automated, reliable, repeatable and

constantly improving software delivery pipelines.
• Start with pipelines with just 3 stages: commit,

acceptance and user acceptance (UAT).
• Jenkins works as the pipeline orchestrator.
• Commit: unit tests, code analysis, build packages
• All subsequent stages use packages built in commit stage
• Acceptance: deploy with SCM to production-like

environment, execute automated acceptance tests
• Use Docker to prepare & run lightweight, reliable

and isolated acceptance test environments
• UAT (on demand): deploy with SCM to production-like

environment, execute manual acceptance tests

Configuration Management

Acknowledgement
• Alba Controls Section and especially: R. Homs,

D. Roldan, J. Andreu, F. Becheri and S. Blanch
• Sardana and Taurus community members
• Alba IT Systems Section and especially to S. Pusó,

M. Rodríguez, M. Díaz and A. Pérez
• Alba MIS Section and especially to D. Salvat

Continuous documentation

Inserting test scenarios to test cases
using Python decorators.

Proof-of-concept Taurus continuous delivery pipeline.

Taurus documentation on RTD.

Operating system agnostic installation of packages using Salt.

• Salt pros: repos integration modules e.g. apt, yum
allows operating system agnostic configurations,
either master-minion or ssh-based architecture,
supports Windows, easy integration Continuous
Delivery tools, high scalability

• New SCM cons: require new packaging from
projects, and setup of repos

