Paper | Title | Other Keywords | Page |
---|---|---|---|
MOOCNO01 | Emittance Control in the Presence of Collective Effects in the FERMI@Elettra Free Electron Laser Linac Driver | FEL, electron, linac, brightness | 6 |
|
|||
Recent beam transport experiments conducted on the the linac driving the FERMI@Elettra free electron laser have provided new insights concerning the transverse emittance degradation due to both coherent synchrotron radiation (CSR) and geometric transverse wakefield (GTW), together with methods to counteract such degradation. For beam charges of several 100's of pC, optics control in a magnetic compressor results to minimize the CSR once the H-function is considered*. We successfully extended this approach to the case of a modified double bend achromat system, opening the door to relatively large bending angles and compact transfer lines**. At the same time, the GTWs excited in few mm diameter iris collimators*** and accelerating structures have been characterized in terms of the induced emittance growth. A model integrating both CSR and GTW effects suggests that there is a limit on the maximum obtainable electron beam brightness in the presence of such collective effects.
* S. Di Mitri et al., PRST-AB 15, 020701 (2012) ** S. Di Mitri et al., PRL 110, 014801 (2013) *** S. Di Mitri et al., PRST-AB 15, 061001 (2012) |
|||
![]() |
Slides MOOCNO01 [6.919 MB] | ||
MOOCNO02 | Multi-Objective Genetic Optimization for LCLS-II X-Ray FEL | undulator, simulation, linac, wakefield | 12 |
|
|||
The Linac Coherent Light Source II (LCLS-II) will build on the success of the world's most powerful X-ray laser, the Linac Coherent Light Source (LCLS). It will add two new X-ray laser beams and room for additional new instruments, greatly increasing the number of experiments carried out each year. Multiple operation modes are proposed to accommodate a variety of user requirements. There are a large number of variables and objectives in the design. For each operation mode, Multi-Objective Genetic Algorithm (MOGA) is applied to optimize the machine parameters in order to minimize the jitters, energy spread, collective effects and emittance. The optimal designs for various operation modes are presented in this paper. The phase and voltage of the linac RF, R56 at the two bunch compressors are optimized. The CSR (coherent synchrotron radiation) can induce large emittance growth, which is minimized by optimizing the phase advance between the compressor and the bend section. The final emittance at the beginning of the undulator is just about 1um and even lower. | |||
![]() |
Slides MOOCNO02 [3.046 MB] | ||
MOPSO07 | Channeling Radiation With Low-Energy Electron Beams: Experimental Plans and Status at Fermilab | electron, radiation, brilliance, laser | 38 |
|
|||
Funding: This work was supported by the DARPA Axis program under contract AXIS N66001-11-1-4196 with Vanderbilt University and Northern Illinois University. Channeling radiation is an appealing radiation process to produce x-ray radiation with low-energy electron beams. In this contribution we describe the anticipated performance and preliminary results from a channeling radiation experiment to produce ~ 1.2-keV radiation from a ~ 4-MeV electron beam at Fermilab's high-brightness electron source lab(HBESL). We also discuss plans to produce X-ray radiation ([10,80]-keV photon energy) at Fermilab's advanced superconducting test accelerator (ASTA). |
|||
MOPSO40 | CLARA Accelerator Design and Simulations | linac, FEL, laser, simulation | 72 |
|
|||
Funding: Science & Technology Facilities Council We present the accelerator design for CLARA (Compact Linear Advanced Research Accelerator) at Daresbury Laboratory. CLARA will be a testbed for novel FEL configurations. The accelerator will consist of an RF photoinjector, S-band acceleration and transport to 250MeV including X-band linearisation and magnetic bunch compression. We describe the transport in detail. Beam dynamics simulations are then used to define a set of operating working points suitable for the different FEL schemes intended to be tested on CLARA. |
|||
MOPSO66 | Start-to-end Simulation of a Next Generation Light Source Using the Real Number of Electrons | electron, simulation, FEL, radiation | 112 |
|
|||
Funding: This research was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Start-to-end simulation plays an important role in design and optimization of next generation light sources. In this paper, we will present start-to-end (from the photocathode to the end of undulator) simulations of a high repetition rate FEL-based Next Generation Light Source driven by CW superconducting linac with the real number of electrons (~2 billion electrons/bunch) using the multi-physics parallel beam dynamics code IMPACT. We will discuss challenges, numerical methods and physical models used in the simulation. We will also present simulation results of a beam transporting through photoinjector, beam delivery system, and final X-ray FEL radiation. |
|||
TUOANO04 | PITZ Experience on the Experimental Optimization of the RF Photo Injector for the European XFEL | laser, electron, cathode, brightness | 160 |
|
|||
The Photo Injector Test facility at DESY, Zeuthen site (PITZ), develops high brightness electron sources for modern free electron lasers. A continuous experimental optimization of the L-band photo injector for such FEL facilities like FLASH and the European XFEL has been performed for a wide range of electron bunch charges – from 20 pC to 2 nC – yielding very small emittance values for all charge levels. Experience and results of the experimental optimization will be presented in comparison with beam dynamics simulations. The influence of various parameters onto the photo injector performance will be discussed.
Phys. Rev. ST Accel. Beams 15, 100701 (2012) |
|||
![]() |
Slides TUOANO04 [3.126 MB] | ||
TUOCNO06 | Slice Emittance Optimization at the SwissFEL Injector Test Facility | optics, gun, quadrupole, laser | 200 |
|
|||
Slice emittance measurements in the SwissFEL injector test facility have demonstrated emittances for the 10pC-200pC bunch charges which are well below the tight requirements of SwissFEL. Results, emittance tuning strategy and measurement methods are reported. | |||
![]() |
Slides TUOCNO06 [0.537 MB] | ||
TUPSO03 | Dark Current Transport and Collimation Studies for SwissFEL | gun, simulation, wakefield, cathode | 209 |
|
|||
In all accelerating cavities a non negligible background of electrons can be generated by field emission (dark current), transported and further accelerated. A careful estimate of the transport of the dark current is crucial in order to minimize radiation damage to the components and activation of the machine. This paper describes the generation and the transport of dark current from the SwissFEL photo injector downstream of the accelerator. The analysis is based on numerical simulations and experimental measurements performed at the SwissFEL Injector Test Facility (SITF). In the simulations the charge distribution is generated by an emission model based on the Fowler-Nordheim equation taking into account the filling time of the cavity and then tracked through the machine. This model has been used to analyze the impact of a low energy collimation system upstream of the first travelling wave accelerating structure on the dark current transport. A slit with several apertures has been installed in the SITF to benchmark the simulations and to verify the impact of the wakefields on the nominal beam. | |||
TUPSO04 | Simulations of a Corrugated Beam Pipe for the Chirp Compensation in SwissFEL | wakefield, undulator, laser, simulation | 214 |
|
|||
In short wavelength FEL designs, bunch compression is obtained by making the beam passing through a magnetic chicane with an energy chirp typically of a percent level. At SwissFEL, before injection into the undulator it is foreseen to remove the residual chirp using the wakes in the C-band accelerating structures of the linac. This scheme works well for the hard X-ray undulator line, which includes the largest accumulation of wakefields, but it leaves a residual chirp in the other undulator line for the soft X-ray beam line, midway in the main linac. Another possibility to remove the residual chirp consists in using the longitudinal wakefields generated by a corrugated beam pipe, as recently proposed by G. Stupakov et al. Before planning a dechirper section in a FEL, an experimental verification of the analytical formulae describing the wakefields is crucial. The SwissFEL injector test facility (SITF) fulfils all the necessary criteria to perform such a proof of principle. We are investigating the technical implementation to perform an experiment in SITF in the second half of 2014. In this paper we present the tracking studies performed to optimize the experiment layout. | |||
TUPSO07 | SwissFEL Injector Design: An Automatic Procedure | gun, laser, simulation, space-charge | 219 |
|
|||
The first section of photo-injectors are dominated by space charge effects due to the low beam energy and the high charge density. An optimization of several parameters such as the emittance and the mismatch along the bunch has to be carried out in order to optimize the final performances of the machine. We focus on the performances of the gun developed at PSI, planned to be installed in the mid of this year in the SwissFEL Injector Test Facility (SITF). Due to the number of variables and constraints we developed a code to automatically perform such an optimization. We used this code to optimize the 200 pC operating point of SwissFEL and to fine tune other charges configurations from 10 pC, obtaining considerably reduction of the slice emittance as compared to the CTF gun, presently installed in the SITF and on which the old lattice optimization was based. The same code with minor modifications has been successfully applied to the facility. | |||
TUPSO14 | Transverse Deflecting Structures for Bunch Length and Slice Emittance Measurements on SwissFEL | linac, diagnostics, undulator, FEL | 236 |
|
|||
The SwissFEL project, under development at the Paul Scherrer Institut, will produce FEL radiation in a wavelength range from 0.1 nm to 7 nm. The facility consists of an S-band rf-gun and booster, and a C-band main linac which accelerates the beam up to 5.8 GeV. Two magnetic chicanes will compress the beam between 2.5 fs rms and 25 fs rms depending on the operation mode. The bunch length and slice parameters will be measured after the first bunch compressor (330 MeV) by using an S-band transverse deflecting structure (TDS). A C-band TDS will be employed to measure the longitudinal parameters of the beam just upstream the undulator beamline (5.8 GeV). With the designed transverse beam optics, an integrated deflecting voltage of 70 MV is required in order to achieve a longitudinal resolution on the femtosecond time scale. In this paper we present the TDS measurement systems to be used at SwissFEL, with a particular emphasis on the new C-band device, including hardware, lattice layout and beam optics. | |||
TUPSO15 | Beam Diagnostic Requirements for the Next Generation Light Source | diagnostics, linac, feedback, FEL | 242 |
|
|||
Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The NGLS project consists in a 2.4 GeV superconducting linac accelerating sub-1 μm normalized emittance bunches used to produce high intensity soft X-ray short pulses from multiple FEL beamlines. The 1 MHz bunch repetition rate, and the consequent high beam power, present special challenges, but also opportunities, in the design of the various electron beam diagnostic devices. The wide range of beam characteristics, from the photoinjector to the undulators, require the adoption of different diagnostics optimized to each machine section and to the specific application of each individual measurement. In this paper we present our plans for the NGLS beam diagnostics, discussing the special requirements and challenges. |
|||
TUPSO18 | Optimization of Dielectric Loaded Metal Waveguides for Acceleration of Electron Bunches using Short THz Pulses | electron, acceleration, space-charge, laser | 250 |
|
|||
Funding: DARPA contract number N66001-11-1-4192 and the Center for Free-Electron Laser Science, DESY Hamburg The last decade has witnessed extensive research efforts to reduce the size of charged particle accelerators to achieve compact devices for providing relativistic particles. To this end, various methods such as laser plasma and dielectric wakefield acceleration are investigated and their pros and cons are studied. With the advent of efficient THz generation techniques based on optical rectification, THz waveguides are also considered to be proper candidates for compact accelerators. Sofar, the proposed schemes toward high power THz generation are capable of producing short pulses, which dictates the study of particle acceleration in the pulsed regime rather than continuous-wave regime. Therefore, THz waveguides are more suitable than cavities for the considered purpose*. Consequently, various effects such as group velocity mismatch and group velocity dispersion start to influence the acceleration scenario and impose limits on the maximum energy gain from the pulse. In this contribution, we investigate electron bunch acceleration and compression in dielectrically loaded metal waveguides for the THz wavelength range and present design methodologies to optimize their performance. * Liang Jie Wong, Arya Fallahi, and Franz X. Kärtner. "Compact electron acceleration and bunch compression in THz waveguides." Optics Express 21, no. 8 (2013): 9792-9806. |
|||
TUPSO24 | Dispersion Based Beam Tilt Correction | quadrupole, FEL, sextupole, electron | 267 |
|
|||
In Free Electron Lasers (FEL), a transverse centroid misalignment of longitudinal slices in an electron bunch reduces the effective overlap between radiation field and electron bunch and therefore the FEL performance. The dominant sources of slice misalignments for FELs are the incoherent and coherent synchrotron radiation within bunch compressors as well as transverse wake fields in the accelerating cavities. This is of particular importance for over-compression which is required for one of the key operation modes for the SwissFEL planned at the Paul Scherrer Institute. The centroid shift is corrected using corrector magnets in dispersive sections, e.g. the bunch compressors. First and second order corrections are achieved by pairs of sextupole and quadrupole magnets in the horizontal plane while skew quadrupoles correct to first order in the vertical plane. Simulations and measurements at the SwissFEL Injector Test Facility are done to investigate the proposed correction scheme for SwissFEL. This paper presents the methods and results obtained. | |||
TUPSO28 | Development of Photocathode RF-gun at PAL | gun, laser, coupling, electron | 279 |
|
|||
We are developing two types of S-band photocathode RF-guns for the X-ray free electron laser (XFEL) at Pohang Accelerator Laboratory (PAL). One is a 1.6-cell RF-gun with a dual side coupler and two pumping ports. This RF-gun is similar to the earlier guns developed at PAL. The other one is a 1.5-cell RF-gun with a coaxial coupler and a cathode preparation system. This RF-gun is similar to the DESY-type L-band RF-gun. We have designed and fabricated two types of RF-guns. In this paper we introduce and compare two different RF-guns. | |||
TUPSO35 | The MAX IV Linac as X-Ray FEL Injector: Comparison of Two Compression Schemes | linac, wakefield, FEL, electron | 294 |
|
|||
The MAX IV linac will be used for injections and top up of two storage rings and at the same time provide a high brightness pulses to a short pulse facility (SPF) and an X-ray FEL (phase 2). Compression in the linac is done in two double achromats which implies a positive R56 unlike the commonly used chicane compressor scheme with negative R56. Compression using the achromats scheme requires the electron bunch to be accelerated on a falling RF slope resulting in an energy chirp that longitudinal wakefields will boost along the linac. This permits a stronger compression. In this proceeding we will present how the longitudinal wakefields interact with the bunch compression in the double achromat scheme compared with the chicane compression case. Focus is brought on how the unique MAX IV linac lattice is fully capable to cope with the high demands of an FEL injector. The charge related electron beam jitter in both set-ups will also be investigated. | |||
TUPSO36 | Beam Dynamics Optimization for the High Brightness PITZ Photo Injector Using 3D Ellipsoidal Cathode Laser Pulses | laser, electron, cathode, simulation | 298 |
|
|||
Funding: The work is funded by the German Federal Ministry of education and Research, project 05K10CHE “Development and experimental test of a laser system for producing quasi 3D ellipsoidal laser pulses”. The Photo Injector Test facility at DESY, Zeuthen Site (PITZ) is one of the leading producers of high brightness electron beams for linac based Free Electron Lasers (FELs) with a specific focus on the requirements of FLASH and the European XFEL. The main activities at PITZ are devoted to the detailed characterization and optimization of electron sources yielding to an extremely small transverse beam emittance. The cathode laser pulse shaping is considered as one of the key issues for the high brightness photo injector. Beam dynamics simulations show that the injector performance could be further improved by replacing the typical cylindrically shaped PITZ bunches by uniformly filled 3D ellipsoidal shaped electron beams. A set of numerical simulations were performed to study the beam dynamics of uniformly filled 3D ellipsoidal bunches with 1 nC charge in order to find an optimum PITZ machine setup which will yield the best transverse emittance. Simulation results comparing both options of cylindrical and 3D ellipsoidal beams are also presented and discussed. |
|||
TUPSO44 | Transverse Emittance Measurement by Slit-scan Method for an SRF Photo Injector | solenoid, background, SRF, laser | 322 |
|
|||
Funding: European Community-Research Infrastructure Activity German Federal Ministry of Education and Research Grant 05 ES4BR1/8, LA³NET funding, Grant Agreement Number GA-ITN-2011-289191 A 3½-cell SRF-gun has been developed and commissioned in Helmholtz-Zentrum Dresden-Rossendorf (HZDR) since 2004. The emittance of this gun was measured before by both solenoid/quadrupole scanning method and multiple slits method. Recently we did new measurements by single slit scanning method which outputs a detailed phase space with higher space resolution and no overlapping problem. This contribution will first describe our diagnostics beam line and software functions, focusing on data processing algorithm. Then an investigation will be presented on the emittance dependence on several important gun parameters as bunch charge, laser phase and DC voltage on the photo cathode. For the bunch charge, a linear increasing relation with the emittance was found. Lower laser phase and higher DC voltage result in lower beam emittance. The influence of a downstream solenoid is studied for the preliminary understanding of the emittance compensation. The contribution will discuss the measurement errors and compare results with other methods. Also, ASTRA simulations of the SRF-gun beams with same parameters will be presented which have similar trends like our measurements. |
|||
TUPSO47 | First Results of a Longitudinal Phase Space Tomography at PITZ | electron, booster, gun, laser | 334 |
|
|||
The Photo Injector Test facility at DESY, Zeuthen Site (PITZ), was established as a test stand of the electron source for FLASH and the European X-ray Free Electron Laser (XFEL). One of the tasks at PITZ is the detailed characterization of longitudinal properties of the produced electron bunches. The measurements of the electron bunch longitudinal phase space can be done by tomographic methods using measurements of the momentum spectra by varying the electron bunch energy chirp. At PITZ the energy chirp of the electron bunch can be changed by varying the RF phase of the accelerating structure downstream the gun. The resulting momentum distribution can be measured in a dispersive section installed downstream the accelerating structure. The idea of the measurement and the tomographic reconstruction technique is described in this paper. The setup and first measurement results of the bunch longitudinal phase space measurements using the tomographic technique for several electron bunch charges, including 20 pC, 100 pC and 1 nC, are presented as well. | |||
TUPSO69 | Injector Design Studies for NGLS | gun, simulation, electron, cathode | 391 |
|
|||
Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231 The APEX project at LBNL is developing an electron injector to operate a high repetition rate x-ray FEL. The injector is based on the VHF gun, a high-brightness, high-repetition-rate photocathode electron gun presently under test at LBNL. The design of the injector is particularly critical because it has to take the relatively low energy beam from the VHF gun, accelerate it at more relativistic energies while simultaneously preserving high-brightness and performing longitudinal compression. The present status of the APEX injector design studies is presented. |
|||
TUPSO74 | A Coaxially Coupled Deflecting-accelerating Mode Cavity System for Phase-space Exchange (PSEX) | cavity, coupling, simulation, electron | 395 |
|
|||
A feasible method to readily remove energy spread (R56 term) due to thick lens effect of a deflecting mode RF-cavity has been widely investigated for emittance exchange in 6D phase-space*,**. By means of theoretical calculation and numerical analysis, it was found that an accelerating cavity effectively cancel the longitudinal phase space chirp. We have extensively investigated the combined deflecting-accelerating mode phase-space exchanger with the simple RF distribution system of the beam-pipe coaxial coupler. EM simulations proved the coupling scheme with eigenmode and S-parameter analyses. Currently we are looking into 3D beam dynamics in the system with tracking/particle-in-cell (PIC) simulations and wakefield analysis. Proof-of-concept (POC) experiment is planned with a high-Q normal conducting cavity built in a cryogenic cooling system (liquid nitrogen) in Fermilab.
* P. Emma, et. al., Phys. Rev. ST Accel. Beams 9, 100702 (2006) ** Zholents and M. Zolotorev, LBNL CBP Seminar (2010) and No. ANL/APS/LS-327(2011) |
|||
TUPSO76 | In Situ Characterization of ALKALI Antimonide Photocathodes | cathode, scattering, synchrotron, brightness | 403 |
|
|||
Funding: The authors wish to acknowledge the support of the US DOE, under Contract No. KC0407-ALSJNT-I0013, DE-AC02-98CH10886 and DE-SC0005713. Use of CHESS is supported by NSF award DMR-0936384. Alkali antimonide photocathodes are a prime candidate for use in high-brightness photoinjectors of free electron lasers and 4th generation light sources. These materials have complex growth kinetics - many methods exist for forming the compounds, each with different grain size, roughness, and crystalline texture. These parameters impact the performance of the cathodes, including efficiency, intrinsic emittance and lifetime. In situ analysis of the growth of these materials has allowed investigation of correlations between cathode structure and growth parameters and the resulting quantum efficiency (QE). The best cathodes have a QE at 532 nm in excess of 6% and are structurally textured K2CsSb with grain sizes in excess of 20 nm. X-ray reflection (XRR) has been used to characterize the roughness evolution of the cathode, while X-ray Diffraction (XRD) has been used to characterize the texture, grain size and stoichometry. |
|||
TUPSO82 | Spectroscopy System for LCLS Photocathodes | electron, vacuum, gun, cathode | 421 |
|
|||
Funding: Work supported by US DOE contract DE-AC02-76SF00515. Photocathode reliability is important from an operational standpoint. Unfortunately LCLS copper photocathodes have not always been reliable. Some have operated well for long periods of time while others have required continual maintenance. It is believed that the observed variations in quantum efficiency, emittance and lifetimes are inherently surface related, corresponding to changes in composition or morphology. The RF Electron-gun Cathode, Electron Surface Spectrometer, or RECESS, system has been commissioned to study this by making essential measurements that could not be obtained otherwise. These involve photocathode surface chemical characterization. The system is designed to use a combination of angle-resolved ultraviolet and x-ray photoelectron spectroscopy and is capable of either stand-alone operation or interoperability with a beam line at SSRL. Here we report on the first commissioning spectra and the direction of the project going forward. |
|||
TUPSO84 | SLAC RF Gun Photocathode Test Facility | gun, laser, diagnostics, vacuum | 427 |
|
|||
Funding: Work supported by US DOE contract DE-AC02-76SF00515. A RF gun photocathode test facility has been commissioned at SLAC. The facility consists of a S-band gun, high power RF, a UV drive laser and beam diagnostics. Here we report on the capabilities of the facility demonstrated during commissioning. Currently the facility is being used to study in-situ laser processing of copper photocathodes. In the future the facility will be used to study fundamental gun and photocathode performance limitations and enhancement strategies. Eventually it is envisioned to integrate a load lock and plug into the gun enabling the evaluation of high performance surface sensitive semiconductor photocathodes and the incorporation of ex-situ surface science analytical techniques. |
|||
TUPSO85 | High Brightness Electron Beams from a Multi-filamentary Niobium-tin Photocathode | electron, cathode, laser, space-charge | 431 |
|
|||
High-brightness electron sources are of fundamental interest for modern FELs. Inspired by the micro-structure of field emitter arrays, we propose a new type of metallic photo-cathode consisting of thousands of Nb3Sn micro-columns. With this metallic photo-cathode quantum efficiencies up to 0.5% are achieved under stable operation, and preliminary emittance measurements are presented. | |||
TUPSO86 | Photocathode Laser Wavelength-tuning for Thermal Emittance and Quantum Efficiency Studies | laser, cathode, photon, electron | 434 |
|
|||
SwissFEL compact design is based on extremely low emittance electron beam from an RF photoinjector. Proper temporal and spatial shaping of the photocathode drive laser is employed to reduce the space charge emittance contribution. However, the ultimate limit for the beam emittance is the thermal emittance, which depends on the excess energy of the emitted photoelectrons. By varying the photocathode laser wavelength it is possible to reduce the thermal emittance. For this purpose, we developed a tunable Ti:sapphire laser and an optical parametric amplifier which allow to scan the wavelength between 250 and 305 nm. The system permits to study the thermal emittance and the quantum efficiency evolution as function of the laser wavelength for the copper photocathode in the RF gun of the SwissFEL injector test facility. The results are presented and discussed. | |||
WEOCNO03 | 3-D Theory of a High Gain Free-Electron Laser Based on a Transverse Gradient Undulator | FEL, electron, undulator, radiation | 481 |
|
|||
The performance of a free-electron laser (FEL) depends significantly on the various parameters of the driving electron beam. In particular, a large energy spread in the beam results in a great reduction of the FEL gain, an effect which is relevant when one considers FELs driven by plasma accelerators or storage rings. For such cases, one possible solution is to use a transverse gradient undulator (TGU) [*,**]. In this concept, the energy spread problem is mitigated by properly dispersing the e-beam and introducing a linear, transverse field dependence in the undulator. This paper presents a self-consistent theoretical analysis of a TGU-based high gain FEL, taking into account three-dimensional (3-D) effects and beam size variations along the undulator [***]. The results of our theory compare favorably with simulation and are used in fast optimization studies of various X-ray FEL configurations.
*T. Smith et al., J. Appl. Phys. 50, 4580 (1979). **Z. Huang, Y. Ding, C. Schroeder, Phys. Rev. Lett. 109, 204801 (2012). ***P. Baxevanis, R. Ruth, Z. Huang, Phys. Rev. ST-AB 16, 010705 (2013). |
|||
![]() |
Slides WEOCNO03 [3.217 MB] | ||
WEPSO24 | Compact XFEL Light Source | electron, laser, FEL, cathode | 757 |
|
|||
Funding: This work was supported by DARPA grant N66001-11-1-4192, CFEL DESY, DOE grants DE-FG02-10ER46745, and NSF grant DMR-1042342. X-ray free electron laser studies are presented that rely on a nanostructured electron beam interacting with a “laser undulator” configured in the head-on inverse Compton scattering geometry. The structure in the electron beam is created by a nanoengineered cathode that produces a transversely modulated electron beam. Electron optics demagnify the modulation period and then an emittance exchange line translates the modulation to the longitudinal direction resulting in coherent bunching at x-ray wavelength. The predicted output radiation at 1 keV from a 7 MeV electron beam reaches 10 nJ or 6X108 photons per shot and is fully coherent in all dimensions, a result of the dominant mode growth transversely and the longitudinal coherence imposed by the electron beam nanostructure. This output is several orders of magnitude higher than incoherent inverse Compton scattering and occupies a much smaller phase space volume, reaching peak brilliance of 1027 and average brilliance of 1017 photons/(mm2 mrad2 0.1% sec). |
|||
WEPSO31 | THz Radiation Source Potential of the R&D ERL at BNL | gun, electron, SRF, linac | 566 |
|
|||
Funding: Work supported by BSA DOE, Contract No. DE-AC02-98CH10886 An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under commissioning at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. This ERL will be used as a test bed to study issues relevant for very high current ERLs. High repetition rate (9.5 MHz), CW operation and high performance of electron beam with some additional components make this ERL an excellent driver for high power coherent THz radiation source*. We discuss potential use of BNL ERL as a source of THz radiation and results of the beam dynamics simulation. We present the status and commissioning progress of the ERL. *Ilan Ben-Zvi. et al. Coherent harmonic generation of THz radiation using wakefield bunching (presented at this conference) |
|||
WEPSO47 | Simulation Results of Self-seeding Scheme in PAL-XFEL | radiation, undulator, electron, simulation | 606 |
|
|||
There are two major undulator lines in Pohang Accelerator Laboratory XFEL (PAL XFEL), soft X-ray and hard X-ray. For the hard X-ray undulator line, self-seeding is the most promising approach to supply narrow bandwidth radiation to the users. The electron energy at hard X-ray undulator is 10 GeV and the central wavelength is 0.1 nm. We plan to provide the self-seeding option in the Phase I operation of PAL-XFEL. In this talk, the simulation results for the self-seeding scheme of hard X-ray undulator line in PAL XFEL will be presented. | |||
WEPSO80 | Coherence Properties of the Radiation From FLASH | radiation, FEL, undulator, electron | 704 |
|
|||
Several user groups at FLASH use higher odd harmonics (3rd and 5th) of the radiation in experiments. Some applications require knowledge of coherence properties of the radiation at he fundamental and higher harmonics. In this paper we presents results of the studies of coherence properties of the radiation from FLASH operating at radiation wavelength of 6.x nm at the fundamental harmonic, and higher odd harmonics (2.x nm and 1.x nm) at electron energy of 1 GeV. | |||
THOBNO02 | Transverse Gradient Undulators for a Storage Ring X-ray FEL Oscillator | FEL, electron, undulator, storage-ring | 740 |
|
|||
Funding: Work supported by U.S. Dept.~of Energy, Office of Basic Energy Sciences, Contract No.~DE-AC02-06CH11357. An x-ray FEL oscillator (XFELO) is a fully coherent 4th generation source with complementary scientific applications to those based on self-amplified spontaneous emission*. While the naturally high repetition rate, intrinsic stability, and very small emittance produced by an ultimate storage ring (USR) makes it a potential candidate to drive an XFELO, the energy spread is typically an order of magnitude too large for sufficient gain. On the other hand, Smith and coworkers** showed how the energy spread requirement can be effectively mitigated with a transverse gradient undulator (TGU): since the TGU has a field strength that varies with transverse position, by properly correlating the electron energy with transverse position one can approximately satisfy the FEL resonance condition for all electrons. Motivated by recent work in the high-gain regime***, we investigate the utility of a TGU for low gain FELs at x-ray wavelengths. We find that a TGU may make an XFELO realizable in the largest ultimate storage rings now under consideration (e.g., in either the old Tevatron or PEP-II tunnel). * K.-J. Kim, Y. Shvyd'ko and S. Reiche, PRL 100 244802 (2008). ** T. Smith, et al., J. Appl. Phys. 50, 4580 (1979). *** Z. Huang, Y. Ding, and C.B. Schroeder, PRL 109, 204801 (2012). |
|||
![]() |
Slides THOBNO02 [1.208 MB] | ||