Keyword: vacuum
Paper Title Other Keywords Page
MOPSO06 Paraxial Approximation in CSR Modeling Using the Discontinuous Galerkin Method impedance, simulation, radiation, synchrotron 32
 
  • D. A. Bizzozero, J.A. Ellison, K.A. Heinemann, S.R. Lau
    UNM, Albuquerque, New Mexico, USA
 
  Funding: This work was primarily supported by DOE under DE-FG-99ER41104. The work of DB and SL was partially supported by NSF grant PHY 0855678 to the University of New Mexico.
We continue our study* of CSR from a bunch moving on an arbitrary curved trajectory. In that study we developed an accurate 2D CSR Vlasov-Maxwell code (VM3@A) and applied it to a four dipole chicane bunch compressor. Our starting point now is the well-established paraxial approximation** with boundary conditions for a perfectly conducting vacuum chamber with uniform cross-section. This is considerably different from our previous approach* where we calculated the fields from an integral over history, using parallel plate boundary conditions. In this study, we present a Discontinuous Galerkin (DG) method for the paraxial approximation equations. Our basic tool is a MATLAB DG code on a GPU using MATLAB's gpuArray; the code was developed by one of us (DB). We discuss our results in the context of previous work and outline future applications for DG, including a Vlasov-Maxwell study.
* See PRST-AB 12 080704 (2009) and Proceedings from ICAP2012 TUSDC2.
** See PRST-AB 7 054403 (2004), PRST-AB 12 104401 (2009) and Jpn. J. Appl. Phys. 51 016401 (2012).
 
 
MOPSO43 High Power Laser Transport System for Laser Cooling to Counteract Back-Bombardment Heating in Microwave Thermionic Electron Guns laser, gun, electron, coupling 75
 
  • J.M.D. Kowalczyk, M.R. Hadmack, J. Madey, E.B. Szarmes, M.H.E.H. Vinci
    University of Hawaii, Honolulu, HI, USA
 
  Funding: This work was funded by the Department of Homeland Security through grant #2011-DN-077-ARI055-03.
Heat from a high power, short pulse laser deposited on the surface of a thermionic electron gun cathode will diffuse into the bulk producing a surface cooling effect that counteracts the electron back-bombardment (BB) heating intrinsic to the gun. The resulting constant temperature stabilizes the current allowing extension of the gun’s peak current and duty cycle. To enable this laser cooling, high power laser pulses must be transported to the high radiation zone of the electron gun, and their transverse profile must be converted from Gaussian to top-hat to uniformly cool the cathode. A fiber optic transport system is simple, inexpensive, and will convert a Gaussian to a top-hat profile. Coupling into the fiber efficiently and without damage is difficult as tight focusing is required at the input and, if coupled in air, the high fluence will breakdown the air resulting in lost energy. We have devised a vacuum fiber coupler (VFC) that allows the focus to occur in vacuum, avoiding the breakdown of air, and have successfully transported 10 ns long, 85 mJ pulses from a 1064 nm Nd:YAG laser through 20 m of 1 mm diameter fiber enabling testing of the laser cooling concept.
 
 
TUOCNO03 Progress in a Photocathode DC Gun at the Compact ERL gun, cathode, acceleration, high-voltage 184
 
  • N. Nishimori, R. Hajima, S.M. Matsuba, R. Nagai
    JAEA, Ibaraki-ken, Japan
  • Y. Honda, T. Miyajima, M. Yamamoto
    KEK, Ibaraki, Japan
  • H. Iijima, M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
  • M. Kuwahara
    Nagoya University, Nagoya, Japan
 
  Photocathode DC gun to produce a train of electron bunch at high-average current and small emittance is a key component of advanced accelerators for high-power beams. However, DC guns operated at a voltage above 350 kV have suffered from field emitted electrons from a support rod since the development of Lasertron in 1980's. This critical issue has been resolved by a novel configuration, segmented insulator and guard rings, adopted in a DC gun at JAEA and stable application of high voltage at 550 kV has been demonstrated. The gun has been installed at the Compact ERL at KEK and ready for the beam generation. Similar type of DC guns are under development at KEK, Cornell, JLAB and IHEP. In this talk, we present progress in photocathode DC gun for high voltage and small emittance.  
slides icon Slides TUOCNO03 [4.946 MB]  
 
TUPSO17 Status of the Manufacturing Process for the SwissFEL C-Band Accelerating Structures laser, linac, radio-frequency, coupling 245
 
  • U. Ellenberger, H. Blumer, L. Paly, C. Zumbach
    Paul Scherrer Institute, Villigen PSI, Switzerland
  • M. Bopp, H. Fitze, F. Löhl
    PSI, Villigen PSI, Switzerland
 
  For the SwissFEL project a total of 104 C-band (or approximately 6 GHz for 5’712 MHz required) accelerating structures are needed. After developing and RF-testing of several short structures (0.5m), three 2meter prototypes have been produced successfully in-house. Avoiding any RF-tuning after fabrication, a high precision machining of the components is necessary. Special procedures were developed and handling equipment was built in order to maintain the accuracy during stacking and vacuum brazing of the parts for the C-band structures. This paper summarizes the manufacturing techniques and the mechanical test results for constant subvolumes to match the required klystron frequency of 5’712 MHz  
 
TUPSO21 SwissFEL Cathode Load-lock System cathode, gun, laser, extraction 259
 
  • R. Ganter, M. Bopp, N. Gaiffi, T. Le Quang, M. Pedrozzi, M. Schaer, T. Schietinger, L. Schulz, L. Stingelin, A. Trisorio
    PSI, Villigen PSI, Switzerland
 
  The SwissFEL electron source is an RF photo-injector in which the photo-cathode plug can be exchanged. Without load-lock, the cathode exchange takes about one week and cathode surface gets contaminated in the atmosphere during installation, leading to unpredictable quantum efficiency (QE) fluctuations. This motivated the construction of a load lock system to prepare and insert cathodes in the photo-injector. This load lock system consists of three parts: the preparation chamber, the transportable vacuum suitcase and the gun load lock chamber. This three parts system gives the possibility to prepare the cathode surface with methods like vacuum firing and plasma cleaning. The QE can be checked and the plug can be inserted in the gun without breaking vacuum. This will allow establishing an optimized a reproducible cathode preparation procedure. Since several cathodes can be loaded in advance, the exchange procedure reduces the machine shutdown to a few hours (shorter RF conditioning). The system is described and first experience with its use is reported.  
 
TUPSO25 Status of the EU-XFELl Laser Heater laser, undulator, electron, alignment 271
 
  • M. Hamberg, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Funding: This work was supported by the Swedish Research Council under contract number DNR-828-2008-1093.
We describe the technical layout and the status of the laser heater system for the EuXFEL. The laser heater is needed to increase the momentum spread of the electron beam to prevent micro-bunching instabilities in the linac.
 
 
TUPSO27 Design for a Fast, XFEL-Quality Wire Scanner photon, radiation, electron, instrumentation 276
 
  • M.A. Harrison, R.B. Agustsson, T.J. Campese, P.S. Chang, A.Y. Murokh, M. Ruelas
    RadiaBeam, Santa Monica, USA
 
  RadiaBeam Technologies has designed and manufactured a new wire scanner for high-speed emittance measurements of XFEL-type beams of energy 139 MeV. Using three 25-micron thick tungsten wires, this wire scanner measures vertical and horizontal beam size as well as transverse spatial correlation in one pass. The intensity of the beam at a wire position is determined from emitted bremsstrahlung photons as measured by a BGO scintillator system. The wires are transported on a two-ended support structure moved by a ball-screw linear stage. The double-ended structure reduces vibrations in the wire holder, and the two-bellows design negates the effects of air pressure on the motion. The expected minimum beam size measurable by this system is on the order of 10 microns with 0.1-micron accuracy. To achieve this, new algorithms are presented that reduce the effect of the non-zero thickness of the wire on the wire scan output. In addition, novel calculations are presented for determining the elliptical geometric parameters (vertical and horizontal beam size and correlation, or alternatively, the axis lengths and rotation) of the beam from the wire scanner measurements.  
 
TUPSO30 Conditioning Status of the First XFEL Gun at PITZ gun, solenoid, cathode, cavity 282
 
  • I.I. Isaev, J.D. Good, M. Groß, L. Hakobyan, L. Jachmann, M. Khojoyan, W. Köhler, G. Kourkafas, M. Krasilnikov, D. Malyutin, B. Marchetti, R. Martin, A. Oppelt, M. Otevřel, B. Petrosyan, D. Richter, A. Shapovalov, F. Stephan, G. Vashchenko, R.W. Wenndorff
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • P. Boonpornprasert, S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • M.A. Nozdrin
    JINR, Dubna, Moscow Region, Russia
  • G. Pathak
    Uni HH, Hamburg, Germany
 
  The paper describes the recent results of conditioning and dark current measurements for the photocathode RF gun at the photoinjector test facility at DESY, Zeuthen site (PITZ). The aim of PITZ is to develop and operate an optimized photo injector for free electron lasers and linear accelerators which require high quality beams. In order to get high gradients in the RF gun extensive conditioning is required. A data analysis of the conditioning process is based on data saved by a Data Acquisition system (DAQ). Conditioning results of the first gun cavity for the XFEL is presented. The events which occurred during the conditioning are briefly described.  
 
TUPSO33 The Commissioning of Tess: An Experimental Facility for Measuring the Electron Energy Distribution From Photocathodes electron, cathode, laser, brightness 290
 
  • L.B. Jones, R.J. Cash, B.D. Fell, K.J. Middleman, B.L. Militsyn, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D.V. Gorshkov, H.E. Scheibler, A.S. Terekhov
    ISP, Novosibirsk, Russia
 
  ASTeC have developed a Transverse Energy Spread Spectrometer (TESS) – an experimental facility to characterise the energy distribution of electrons emitted by a photocathode. Electron injector brightness is fundamentally limited by the width of this distribution or energy spread, and brightness will be increased significantly by reducing the longitudinal and transverse energy spread at source. TESS supports photocathode performance measurements at room and LN2-temperature under illumination from a range of fixed- and variable-wavelength light sources, allowing characterisation of both metal and semiconductor photocathodes. Preliminary work with GaAs* has shown that electron energy spread is dependent on the quantum efficiency (Q.E.) of the photocathode source, and TESS includes a piezo-electric leak valve to allow controlled degradation of the photocathode Q.E. whilst monitoring the energy spread of emitted electrons. This system offers huge potential to support future photocathode R&D work into a range of photocathode materials. Using GaAs photocathodes activated to high levels of Q.E. in our photocathode preparation facility**, we present commissioning results for TESS.
* Proc. IPAC ’12, TUPPD067, 1557-1559
** Proc. IPAC ’11, THPC129, 3185-3187
 
 
TUPSO43 Status of the SwissFEL C-band Linear Accelerator linac, controls, klystron, low-level-rf 317
 
  • F. Löhl, J. Alex, H. Blumer, M. Bopp, H.-H. Braun, A. Citterio, H. Fitze, H. Jöhri, T. Kleeb, L. Paly, J.-Y. Raguin, L. Schulz, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • U. Ellenberger
    Paul Scherrer Institute, Villigen PSI, Switzerland
 
  This paper will summarize the status of the linear accelerator of the Swiss free-electron laser SwissFEL. It will be based on C-band technology and will use solid-state modulators and a novel type of C-band accelerating structures which has been designed at PSI. Initial test results of first 2 m long structures will be presented together with measurements performed with the first BOC-type pulse compressors. Furthermore, we will present first results of a water cooling system for the accelerating structures and the pulse compressors.  
 
TUPSO52 R&D Towards a Delta-type Undulator for the LCLS undulator, polarization, FEL, radiation 348
 
  • H.-D. Nuhn, S.D. Anderson, G.B. Bowden, Y. Ding, G.L. Gassner, Z. Huang, E.M. Kraft, Yu.I. Levashov, F. Peters, F.E. Reese, J.J. Welch, Z.R. Wolf, J. Wu
    SLAC, Menlo Park, California, USA
  • A.B. Temnykh
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  The LCLS generates linearly polarized, intense, high brightness x-ray pulses from planar fixed-gap undulators. While the fixed-gap design supports a very successful and tightly controlled alignment concept, it provides only limited taper capability (up to 1% through canted pole and horizontal position adjustability) and lacks polarization control. The latter is of great importance for soft x-ray experiments. A new compact undulator design (Delta) has been developed and tested with a 30-cm-long in-vacuum prototype at Cornell University, which adds those missing properties to the LCLS undulator design and is readily adapted to the LCLS alignment concept. Tuning Delta undulators within tight, FEL type tolerances is a challenge due to the fact that the magnetic axis and the magnet blocks are not easily accessible for measurements and tuning in the fully assembled state. An R&D project is underway to install a 3.2-m long out-of-vacuum device in place of the last LCLS undulator, to provide controllable levels of polarized radiation and to develop measurement and tuning techniques to achieve x-ray FEL type tolerances. Presently, the installation of the device is scheduled for August 2013.  
 
TUPSO55 300 mm Electromagnetic Wiggler for ELBE wiggler, electron, insertion, insertion-device 353
 
  • C.W. Ostenfeld, M. Pedersen
    Danfysik A/S, Taastrup, Denmark
 
  Danfysik has designed and built a 300 mm fixed-gap electromagnetic wiggler for the ELBE radiation source at Helmholz Zentrum Dresden Rossendorff. This wiggler will serve as a source of narrow-band THz radiation in the 100 μm to 10 mm range. Due to careful magnetic modelling, and an effective shimming process, we were able to deliver magnetic performance at a high level. We present the details of the modelling, as well as magnetic results.  
 
TUPSO75 Design Analysis and High Power RF Test of a 3.9 GHz 5-cell Deflecting-mode Cavity in a Cryogenic Operation cavity, simulation, cryomodule, coupling 399
 
  • Y.-M. Shin
    Northern Illinois University, DeKalb, Illinois, USA
  • M.D. Church
    Fermilab, Batavia, USA
 
  A 3.9 GHz deflecting mode (π, TM110) cavity has been long used for six-dimensional phase-space beam manipulation tests [1 - 5] at the A0 Photo-Injector Lab (16 MeV) in Fermilab and their extended applications with vacuum cryomodules are currently planned at the Advanced Superconducting Test Accelerator (ASTA) user facility (> 50 MeV). Despite the successful test results, the cavity, however, demonstrated limited RF performance during liquid nitrogen (LN2) ambient operation that was inferior to theoretical prediction. We have been performing full analysis of the designed cavity by analytic calculation and comprehensive system simulation analysis to solve complex thermodynamics and mechanical stresses. The re-assembled cryomodule is currently under the test with a 50 kW klystron at the Fermilab A0 beamline, which will benchmark the modeling analysis. The test result will be used to design vacuum cryomodules for the 3.9 GHz deflecting mode cavity that will be employed at the ASTA facility for beam diagnostics and phase-space control.
[1] D. A. Edwards, LINAC 2002
[2] Y.-E Sun, PRTAB 2004
[3] P. Piot, PRSTAB2006
[4] J. Ruand et al., PRL 2011
[5] Y.-E. Sun, et al., PRL 2010
 
 
TUPSO82 Spectroscopy System for LCLS Photocathodes electron, gun, cathode, emittance 421
 
  • P. Stefan, A. Brachmann, T. Vecchione
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.
Photocathode reliability is important from an operational standpoint. Unfortunately LCLS copper photocathodes have not always been reliable. Some have operated well for long periods of time while others have required continual maintenance. It is believed that the observed variations in quantum efficiency, emittance and lifetimes are inherently surface related, corresponding to changes in composition or morphology. The RF Electron-gun Cathode, Electron Surface Spectrometer, or RECESS, system has been commissioned to study this by making essential measurements that could not be obtained otherwise. These involve photocathode surface chemical characterization. The system is designed to use a combination of angle-resolved ultraviolet and x-ray photoelectron spectroscopy and is capable of either stand-alone operation or interoperability with a beam line at SSRL. Here we report on the first commissioning spectra and the direction of the project going forward.
 
 
TUPSO83 Quantum Efficiency and Transverse Momentum From Metals electron, brightness, FEL, laser 424
 
  • T. Vecchione, D. Dowell
    SLAC, Menlo Park, California, USA
  • J. Feng, H.A. Padmore, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by US DOE contracts DE-AC02-05CH11231, KC0407-ALSJNT-I0013, and DE-SC000571.
QE and transverse momentum are key parameters limiting the achievable brightness of FELs. Despite the importance, little data is available to substantiate current models. Expressions for each and experimental confirmation of each expression with respect to excess energy are presented. Novel instrumentation and analysis techniques developed are described.
 
 
TUPSO84 SLAC RF Gun Photocathode Test Facility gun, laser, emittance, diagnostics 427
 
  • T. Vecchione, A. Brachmann, W.J. Corbett, M.J. Ferreira, S. Gilevich, E.N. Jongewaard, H. Loos, J. Sheppard, S.P. Weathersby, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.
A RF gun photocathode test facility has been commissioned at SLAC. The facility consists of a S-band gun, high power RF, a UV drive laser and beam diagnostics. Here we report on the capabilities of the facility demonstrated during commissioning. Currently the facility is being used to study in-situ laser processing of copper photocathodes. In the future the facility will be used to study fundamental gun and photocathode performance limitations and enhancement strategies. Eventually it is envisioned to integrate a load lock and plug into the gun enabling the evaluation of high performance surface sensitive semiconductor photocathodes and the incorporation of ex-situ surface science analytical techniques.
 
 
WEPSO73 High Average Power Seed Laser Design for High Reprate FELs laser, FEL, electron, controls 697
 
  • R.B. Wilcox, G. Marcus, G. Penn
    LBNL, Berkeley, California, USA
  • T. Metzger, M. Schultze
    TRUMPF Scientific Lasers GmbH + Co. KG, Munchen-Unterfoehring, Germany
 
  Funding: US Department of Energy, under Contract Numbers DE-AC02-0SCH11231.
In the proposed Next Generation Light Source (NGLS), FEL designs use lasers to seed the FEL in an HGHG scheme or bunch the electron beam in an E-SASE scheme. The FELs would run at 100kHz to 1MHz, requiring high average power lasers. For the seeded FEL, laser modulation is applied at 200-240nm, with 250-700MW peak power depending on pulse length, which can vary from 100-10fs. The laser consists of a broadband oscillator and amplitude/phase shaper seeding an optical parametric amplifier (OPA). After recompression, the ~800nm pulse is converted to the fourth harmonic. Losses could be high enough to require 250W at 100kHz, making the OPA ~100x more powerful than existing femtosecond OPAs. In the E-SASE scheme, a single cycle of 5 micron light bunches the beam, which then radiates a short X-ray burst. This requires 100% fractional bandwidth, and precise phase control of the e-field within the pulse, as well as broad band compensation of dispersion throughout the laser path. Bandwidth can be increased by splitting the amplified spectrum into segments and coherently recombining. We present design concepts that are expected to meet requirements, and identify R&D needs.
 
 
WEPSO84 Present Status of Kyoto University Free Electron Laser undulator, FEL, electron, cavity 711
 
  • H. Zen, M. Inukai, T. Kii, R. Kinjo, K. Masuda, K. Mishima, H. Negm, H. Ohgaki, K. Okumura, M. Omer, K. Torgasin, K. Yoshida
    Kyoto University, Institute for Advanced Energy, Kyoto, Japan
 
  A mid-infrared FEL named as KU-FEL (Kyoto University FEL) has been developed for energy related sciences [1]. After the achievement of the first lasing and the power saturation in 2008 [2, 3], we have been working to extend the tunable range of the FEL [4]. By replacing the original 1.6-m undulator into a 1.8 m one, the tunable range was expanded from 10-13 to 5-15 μm in January 2012. Then we fabricated a new undulator duct to reduce the minimum undulator gap from 20 to 15 mm. At 15-mm gap, the FEL gain can be expected to be twice as high as that at 20 mm gap. Commissioning of the new duct will be done in the end of this April. In this presentation, we will report on the result of the commissioning such as tunable range of KU-FEL and the estimated FEL gain, which would be compared with a simulation.
[1] H. Zen, et al., Infrared Phys. Techn., 51, 382 (2008)
[2] H. Ohgaki, et al., Proc. of FEL08, 4 (2008)
[3] H. Ohgaki, et al., Proc. of FEL2009, 572 (2009)
[4] H. Zen, et al., Proc. of FEL2012