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Abstract
The performance of a free-electron laser (FEL) depends

significantly on the various parameters of the driving elec-

tron beam. In particular, a large energy spread in the beam

results in a substantial reduction of the FEL gain, an ef-

fect which is especially relevant when one considers FELs

driven by plasma accelerators or storage rings. For such

cases, one possible solution is to use a transverse gradient

undulator (TGU). In this concept, the energy spread prob-

lem is mitigated by properly dispersing the electron beam

and introducing a linear, transverse field dependence in the

undulator. This paper presents a self-consistent theoretical

analysis of a TGU-based high gain FEL, taking into ac-

count three-dimensional (3-D) effects and beam size vari-

ations along the undulator. The results of our theory com-

pare favorably with simulation and are used in fast opti-

mization studies of various X-ray FEL configurations.

INTRODUCTION
In recent years, the free-electron laser (FEL) has demon-

strated its value as a tunable source of intense, coherent

X-rays. In order to achieve the desired quality for the out-

put radiation, a high-brightness electron beam is required

to drive the machine. Electron beams from laser-plasma

accelerators (LPAs) and ultimate storage rings (USRs) are

characterized by low emittance and (in the case of the for-

mer) very high peak current, which would make them at-

tractive for FEL applications. Unfortunately, they also have

a relatively large energy spread, which poses a problem as

far as their use in FELs is concerned. That is because a

large spread in the energy of the electrons translates into

a significant spread in the resonant wavelength, exceed-

ing the FEL bandwidth. In this paper, we focus on one

proposed solution, namely the transverse gradient undula-

tor (TGU). The latter is an undulator with canted magnetic

poles, so that its vertical field has a linear dependence upon

the horizontal position x. Using a suitable dispersive el-

ement, one can also introduce a linear correlation of the

electron energy with x. By properly selecting the param-

eters involved, one can ensure that electrons with higher

than nominal energy are dispersed towards the higher-field

region in such a way that the variation in the resonant fre-

quency is minimized.

Originally conceived as a way to increase the energy ac-

ceptance of low gain (oscillator) FELs ([1]-[2]), the TGU

has recently been considered in the context of its possible

application in high gain devices. In particular, Ref. [3] de-

veloped a 1-D theoretical model and examined 3-D effects

through simulation. Here, we present a theoretical descrip-

tion of a TGU-based FEL in the framework of the Vlasov-

Maxwell formalism, including 3-D effects due to the trans-

verse electron beam size and emittance. Starting from the

single particle equations of motion, a self-consistent equa-

tion for the amplitude of the radiation is derived using

the Vlasov-Maxwell equations. Whenever applicable, we

show how a simple solution can be obtained in terms of the

eigenmodes of the system.

THEORY
Single Particle Motion

In our analysis, we assume that the magnetic field of the

TGU is given by

Bux = B0
α

ku
sinh(kuy) sin(kuz)

Buy = B0(1 + αx) cosh(kuy) sin(kuz)

Buz = B0(1 + αx) sinh(kuy) cos(kuz) , (1)

where ku = 2π/λu (λu is the undulator period), B0 is

the peak on-axis field and α is the transverse field gradi-

ent, which can be related to the cant angle of the undulator

poles. This magnetic field satisfies Maxwell’s equations

and reduces to the field of a standard, flat-pole undulator

for α → 0. As we have already mentioned, the object of

the TGU is to mitigate the negative impact of a large en-

ergy spread in the electron beam by significantly reducing

the resulting spread in the resonant wavelength. In order

to achieve this, the beam is dispersed in the x-direction so

that the horizontal position of an electron is linearly cor-

related to its energy γmc2 according to x = ηδ, where

δ = γ/γ0−1 is the energy deviation and γ0mc2 is the aver-

age electron energy. On the other hand, the introduction of

the constant field gradient α leads to a linear x-dependence

of the undulator parameter K, i.e. K = K0(1+αx), where

K0 = eB0/(mcku) is its on-axis value (e is the electron

charge). By selecting the dispersion function η as

η =
2 +K2

0

αK2
0

, (2)

the resonant condition λr = λu(1 +K2/2)/(2γ2) is now

satisfied by all the electrons in the beam (up to linear order

in x).

For a detailed derivation of the single particle equations

of motion, we refer to [4]. Here, we merely quote the main

results. As far as the transverse dynamics is concerned,

the TGU is characterized by a horizontal focusing strength
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kβ ∼ (ηγ0)
−1. In this paper, we assume that this focus-

ing effect is weak (kβLu � 1, where Lu is the undulator

length) and exclude it from our analysis. However, we do

take into account the vertical natural focusing of the undu-

lator, whose strength kn is given by kn ≈ K0ku/(
√
2γ0).

Thus, the transverse equations of motion for an electron are

x′′ = 0 and y′′ = −k2ny, or, in a more canonical form,

dx

dz
= px

dpx
dz

= 0 ,

dy

dz
= py

dpy
dz

= −k2ny . (3)

Moreover, we express the electric field of the linearly po-

larized radiation as

Ex =
1

2

∫ ∞

0

dνEν(x, z)e
iνkr(z−ct) + c.c. , (4)

where ν = ω/ωr, Eν is the radiation amplitude, x =
(x, y), ωr = ckr = 2πc/λr = 2γ2

0cku/(1+ a2w) is the res-

onant frequency (aw = K0/
√
2) and c.c. stands for com-

plex conjugate. The pendulum equations for the longitudi-

nal motion are

dθ

dz
= θ′ = 2ku(δ − x

η
)− kr

2
(p2x + p2y + k2ny

2) (5)

and

dδ

dz
= κ1

∫ ∞

0

dνEν(x, z)e
−iΔνkuzeiνθ + c.c. . (6)

Here, θ = kuz + kr(z − ct̄) is the averaged electron

phase, Δν = ν − 1 is the detuning parameter and κ1 =
eK0[JJ ]/(4γ

2
0mc2) - where [JJ ] = J0(Q0) − J1(Q0),

with Q0 = K2
0/(4 + 2K2

0 ), is the well known factor aris-

ing from the wiggle averaging. We note the presence of the

linear term proportional to x on the RHS of Eq. (5), which

reflects the resonant character of particles with x = ηδ.

Vlasov-Maxwell Equations
Following the standard perturbation approach [5], we

find that the linearized, frequency-domain Vlasov equation

for the FEL is

∂fν
∂z

+ px
∂fν
∂x

+ py
∂fν
∂y

− k2ny
∂fν
∂py

+ iνθ′fν

= −κ1
∂f0
∂δ

Eνe
−iΔνkuz , (7)

where fν is the Fourier amplitude of the perturbation f1
to the beam distribution function. Furthermore, the unper-

turbed distribution f0 satisfies the relation

∂f0
∂z

+ px
∂f0
∂x

+ py
∂f0
∂y

− k2ny
∂f0
∂py

= 0 . (8)

On the other hand, the evolution of the radiation field is

governed by the paraxial wave equation(
∂

∂z
+
∇2
⊥

2iνkr

)
Eν = −κ2e

iΔνkuz

∫
dpxdpy

∫
dδfν ,

(9)

where κ2 = eK0[JJ ]/(2ε0γ0) - ε0 is the vacuum permit-

tivity. Eqs. (7)-(9) accurately describe the FEL interaction

in the linear regime. Using the method of integration along

the unperturbed trajectories ([5],[6]), Eq. (7) can be solved

in terms of fν , yielding

fν = −κ1
∂f0
∂δ

∫ z

0

dζEν(x+, y+, ζ)e
−iΔνkuζ

× exp
[
iν(θ′ξ − (kupx/η)ξ

2)
]

(10)

for an initially unmodulated electron beam. In the equation

given above, we have defined ξ = ζ − z, x+ = x + pxξ
and y+ = y cos(knξ)+ (py/kn) sin(knξ). We then choose

a background distribution that corresponds to a dispersed

beam with a constant size in the y-direction and a uniform

longitudinal profile, i.e.

f0 =
Nb/lb

(2π)
5/2

σxσyσ′xσ′yσδ

× exp

[
− (x− ηδ − pxzx)

2

2σ2
x

− p2x
2σ′x

2

]

× exp

[
− y2

2σ2
y

− p2y

2σ′y
2

]
exp

[
− δ2

2σ2
δ

]
. (11)

In the above relation, lb and Nb are the bunch length and

the total number of electrons, σδ is the rms energy spread,

zx = z − z0 (z0 is a constant offset) while σx,y and σ′x,y
are the rms values for the beam size and the divergence at

zx = 0 (in the absence of dispersion). Note that σ′y/σy =
kn and that the beam emittance values are εx,y = σx,yσ

′
x,y.

Inserting Eq. (10) into the RHS of Eq. (9) and performing

the δ-integration, we obtain a self-consistent equation for

the amplitude of the radiation:(
∂

∂z
+
∇2
⊥

2ikr

)
Eν = − 8iρ3T k

3
u

2πσ′xσ′y

∫ z

0

dζξe−iΔνkuξ

× exp
[
−2(σef

δ )
2
k2uξ

2
] ∫

dpxdpyEν(x+, y+, ζ)

× exp[2ikuξ

(
− σ2

x

σ2
T

x

η
− px

η

(
ξ

2
+

(
1− σ2

x

σ2
T

)
zx

))
]

× exp

[
− (x− pxzx)

2

2σ2
T

− 1

2

(
1

σ′x
2 + ikrξ

)
p2x

−1

2

(
1

σ′y
2 + ikrξ

)
(p2y + k2ny

2)

]
. (12)

Here,

σT = (σ2
x + η2σ2

δ )
1/2 = σx

(
1 +

η2σ2
δ

σ2
x

)1/2

(13)

is the total horizontal beam size in the absence of emit-

tance,

ρT = ρ

(
1 +

η2σ2
δ

σ2
x

)−1/6

(14)
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is the corresponding attenuated FEL parameter and σef
δ is

a (reduced) effective energy spread given by

1

(σef
δ )

2 =
1

σ2
δ

+
η2

σ2
x

→ σef
δ = σδ

(
1 +

η2σ2
δ

σ2
x

)−1/2

.

(15)

Efficient operation of the TGU requires ησδ/σx � 1, so

we usually approximate σef
δ ≈ σx/η. The FEL parameter

ρ in absence of dispersion is given by

ρ = (
Ip

16IA

K2
0 [JJ ]

2

γ3
0σxσyk2u

)1/3 , (16)

where Ip = ecNb/lb is the peak current and IA ≈ 17 kA

is the Alfven current. Eq. (12) incorporates all the three-

dimensional effects under consideration, including the vari-

ation of the horizontal beam size with z.

Eigenmode Formalism
The case of vanishing horizontal emittance (i.e. when

σ′x → 0 but σ′y 	= 0) is relevant for FELs based on electron

beams from ultimate storage rings and also allows for a

simpler description in terms of guided modes of the form

Eν = A(x)eiμz , where μ is the (constant) complex growth

rate and A(x) is the mode profile. In particular, we find

that the eigenmode equation is(
μ− ∇

2
⊥

2kr

)
A(x) = − 8ρ3T k

3
u√

2πσy

exp

(
− x2

2σ2
T

)

×
∫ 0

−∞
dξ

ξei(μ−Δνku)ξ

|sin(knξ)| exp
[
−2(σef

δ )
2
k2uξ

2
]

× exp

(
−2ikuξ σ

2
x

σ2
T

x

η

)∫
dy+A(x, y+)

× exp

[
− (1 + ikrσ

′
y
2
ξ)[y2+ + y2 − 2yy+ cos(knξ)]

2σ2
ysin

2(knξ)

]
.

(17)

We employ a variational technique in order to obtain an

approximate solution for the fundamental mode [7]. As-

suming a trial solution of the form A(x) = exp(−axx2 +
bx) exp(−ayy2) - where the linear bx term in the exponent

has been added to account for the asymmetry in the integral

kernel of Eq. (17) under the reflection x→ −x - we multi-

ply both sides of the above equation by A(x) and integrate

over the transverse position. The result is the relation

μ+
ax + ay
2kr

= −8ρ3T k3u
√
ax
√
ay√

ax + 1/(4σ2
T )

×
∫ 0

−∞
dξξ exp

⎛
⎝ (b− ikuξ(σ

2
x/σ

2
T )

1
η )

2

2ax + 1/(2σ2
T )

− b2

2ax

⎞
⎠

× ei(μ−Δνku)ξ exp
[
−2(σef

δ )
2
k2uξ

2
]/[

a2yσ
2
ysin

2(knξ)

+ ay(1 + ikrσ
′
y
2
ξ) + (1/(4σ2

y))(1 + ikrσ
′
y
2
ξ)2]1/2 .

(18)

Using Eq. (18) in conjunction with ∂μ/∂ax = 0, ∂μ/∂b =
0 and ∂μ/∂ay = 0, we obtain an approximation to the fun-

damental growth rate and mode profile. If the emittance in

both directions is sufficiently small, we can employ a par-

allel beam model for both x and y, in which case Eq. (18)

reduces to

μ+
ax + ay
2kr

= −8ρ3T k3u
√
ax
√
ay√

ax + 1/(4σ2
T )

√
ay + 1/(4σ2

y)

×
∫ 0

−∞
dξξei(μ−Δνku)ξ exp

[
−2(σef

δ )
2
k2uξ

2
]

× exp

⎛
⎝ (b− ikuξ(σ

2
x/σ

2
T )

1
η )

2

2ax + 1/(2σ2
T )

− b2

2ax

⎞
⎠ . (19)

The integral on the RHS of the above relation can be ex-

pressed in terms of error functions, allowing for faster nu-

merical calculations. In particular, we find

μ+
ax + ay
2kr

= −8ρ3T k3u
√
ax
√
ay√

ax + 1/(4σ2
T )

√
ay + 1/(4σ2

y)

× eA0

[√
πA1

4A
3/2
2

exp

(
A2

1

4A2

)
Erfc

(
A1

2A
1/2
2

)
− 1

2A2

]
,

(20)

where Erfc(x) = 1 − (2/
√
π)

∫ x

0
e−t2dt is the comple-

mentary error function and

A0 = − b2

4ax(2axσ2
T + 1/2)

,

A1 = i[μ−Δνku − 2
σ2
x

σ2
T

kub/η

2ax + 1/(2σ2
T )

] ,

A2 =
σ4
x

σ4
T

(ku/η)
2

2ax + 1/(2σ2
T )

+ 2(σef
δ )2k2u . (21)

Once the growth rate and the mode parameters are known,

one can calculate the power gain length Lg = −1/(2
[μ])
as well as the mode sizes σrx = (4Re[ax])

−1/2 and σry =
(4Re[ay])

−1/2.

NUMERICAL RESULTS
To illustrate our theoretical analysis, we have used two

FEL parameter sets, both of which correspond to soft X-

ray machines (Table 1). The first set describes an FEL

driven by a laser-plasma accelerator ([3]) while the second

set corresponds to a machine that utilizes the beam from

the proposed PEP-X USR. For the LPA parameters, we

start by considering a dispersion η = 3.5 mm (for which

σT /σx = 3.25). Using the parallel beam model - Eq. (19)

or (20) - we study the variation of the main properties of

the fundamental mode with respect to the detuning param-

eter. In particular, in Fig. 1, we plot the negative imaginary

part of the scaled, fundamental growth rate μ0 = μ/(2ρku)
as a function of the scaled detuning ν̂ = Δν/(2ρ) while
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Table 1: Undulator and Electron Beam Parameters

Parameter LPA USR

Undulator parameter K0 2 3.68

Undulator period λu 1 cm 2 cm

beam energy γ0mc2 1 GeV 4.5 GeV

Resonant wavelength λr 3.9 nm 1 nm

Peak current Ip 10 kA 200 A

Energy spread σδ 10−2 1.5× 10−3

Normalized emittance γ0εx 0.1 μm 0.0123 μm

Normalized emittance γ0εy 0.1 μm 1.23 μm

Horizontal size σx 11.3 μm 8.3 μm

Vertical size σy 11.3 μm 38.7 μm

Fig. 2 shows the frequency dependence of the scaled mode

sizes. For ν̂ ≈ −0.5, the growth rate has a maximum value

−
[μ0]max ≈ 0.28. This corresponds to a frequency-

optimized gain length Lg =
√
3L0/(2 |
[μ0]|) ≈ 22.3

cm, where L0 = λu/(4π
√
3ρ) ≈ 7.3 cm is the 1D gain

length. Moreover, we note that the mode size in both x and

y increases as we move towards longer wavelength (nega-

tive detuning). The analytical formula of Eq. (20) greatly

facilitates the fast calculation of the frequency-optimized

gain length as a function of the dispersion. The results are

shown in Fig. 3, once more for the LPA parameters. For

comparison, we have also included optimized gain length

values derived from the 1-D formula ([3])

Lg ≈ λu

4π
√
3ρT

[
1 +

(σef
δ )

2

ρ2T

]
, (22)

where we use the approximation σef
δ ≈ σx/η. As ex-

pected, the gain length estimates from the 3-D theory are

larger than their 1-D counterparts. However, the functional

behavior is the same in both cases, in that the optimized

−0.8 −0.6 −0.4 −0.2 0

0.23

0.24

0.25

0.26

0.27

0.28

Δν/(2ρ)

−
Im

[μ
]/

(2
ρ 

k u)

Figure 1: Negative imaginary part of the fundamental FEL

growth rate μ (in units of 2ρku) as a function of the detun-

ing Δν (in units of 2ρ) for η = 3.5 mm (LPA set).
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Figure 2: Scaled mode sizes as a function of detuning. In

particular, the blue curve shows the variation of σrx/σT

while the red one corresponds to σry/σy (η = 3.5 mm,

LPA set).

0.005 0.01 0.015 0.02 0.025 0.03
0.15

0.2

0.25

0.3

η (m)

L
g (

m
)

3D
1D

Figure 3: Frequency-optimized gain length as a function of

dispersion for the LPA parameters. The data shown were

derived using the parallel beam theory (blue) and the 1D

formula - Eq. (22) - (red).

gain length attains a minimum for a particular dispersion

(5-7 mm in our case). For dispersion values smaller than

the optimal (where the effective energy spread is still large),

the gain length curve is considerably steeper than for large

η, where the large horizontal beam size eventually domi-

nates the variation of Lg . Lastly, we note that for η = 1
cm, we obtain an optimized gain length of slightly more

than 20 cm. This agrees with the SASE simulations in [3],

which showed saturation within 5 m of undulator for this

dispersion value.

Next, we consider the parameters of the TGU FEL based

on the PEP-X storage ring. In this case, we note that the un-

dulator structure is rotated so that its x direction (in which

we introduce the dispersion and the field gradient) becomes
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Im
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Figure 4: Scaled FEL growth rate as a function of disper-

sion for Δν/(2ρ) = 0.0/−0.2/−0.4 (blue/red/green-USR

set). Included are data from a parallel beam analysis (solid

lines) and the model which includes vertical emittance and

focusing (dashed lines).
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Figure 5: Frequency-optimized gain length as a function of

dispersion for the USR example, using the parallel beam

theory (blue) and the 1D formula (red).

perpendicular to the horizontal plane of the ring. This is

done in order to take advantage of the much smaller equi-

librium emittance in the vertical plane of the ring. In Fig. 4,

we plot the scaled growth rate in terms of the dispersion

for different values of the detuning, using both the parallel

beam theory and the model which takes into account verti-

cal emittance and undulator focusing. It becomes evident

that the FEL growth rate is suppressed due to the added

emittance effect. Overall, we obtain a maximum scaled

growth rate −
[μ0]max ≈ 0.265 from the parallel beam

theory (which translates into a gain length Lg ≈ 4.8 m)

while emittance reduces this value by about 20%. These

observations agree with the results of a more rigorous opti-
mization, given in Fig. 5.

CONCLUSION
We have developed a theoretical framework for the study

of a TGU-based, high gain FEL which takes into account

three-dimensional effects such as emittance and undulator

focusing. Whenever possible, we obtain a simplified de-

scription in terms of the FEL eigenmodes, which are deter-

mined through a variational technique. For small enough

emittance, we use a parallel beam model which yields an-

alytical expressions and facilitates the fast calculation of

the mode properties. The results of our analysis are then

used in optimization studies for two soft X-ray TGU FEL

configurations.
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