Keyword: diagnostics
Paper Title Other Keywords Page
TUOBNO01 Beam Diagnostics for Coherent Optical Radiation Induced by the Microbunching Instability gun, linac, laser, radiation 169
 
  • A.H. Lumpkin
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The generation of the ultrabright beams required by modern free-electron lasers (FELs) has generally relied on chicane-based bunch compressions that often result in the microbunching instability. Following compression, spectral enhancements can extend even into the visible wavelengths through the longitudinal space charge impedances. Optical transition radiation (OTR) screens have been extensively used for transverse electron beam size measurements for the bright beams, but the presence of longitudinal microstructures (microbunching) in the electron beam or the leading edge spikes can result in strong, localized coherent enhancements (COTR) that mask the actual beam profile. We now have evidence for the effects in both rf photocathode-gun injected linacs* and thermionic-cathode-gun injected linacs**. Since the first observations, significant efforts have been made to characterize, model, and mitigate COTR effects on beam diagnostics. An update on the state-of-the-art for diagnosing these effects will be given as illustrated by examples at APS, LCLS, SCSS, SACLA, and NLCTA.
*A.H. Lumpkin et al.,Phys. Rev. ST Accel. Beams 12, 040704 (2009).
**H. Tanaka,"Commissioning of the Japanese XFEL at Spring8, Proceedings of IPAC2011, San Sebastián, Spain, 21-25 (2011).
 
slides icon Slides TUOBNO01 [1.805 MB]  
 
TUPSO14 Transverse Deflecting Structures for Bunch Length and Slice Emittance Measurements on SwissFEL linac, emittance, undulator, FEL 236
 
  • P. Craievich, R. Ischebeck, F. Löhl, G.L. Orlandi, E. Prat
    PSI, Villigen PSI, Switzerland
 
  The SwissFEL project, under development at the Paul Scherrer Institut, will produce FEL radiation in a wavelength range from 0.1 nm to 7 nm. The facility consists of an S-band rf-gun and booster, and a C-band main linac which accelerates the beam up to 5.8 GeV. Two magnetic chicanes will compress the beam between 2.5 fs rms and 25 fs rms depending on the operation mode. The bunch length and slice parameters will be measured after the first bunch compressor (330 MeV) by using an S-band transverse deflecting structure (TDS). A C-band TDS will be employed to measure the longitudinal parameters of the beam just upstream the undulator beamline (5.8 GeV). With the designed transverse beam optics, an integrated deflecting voltage of 70 MV is required in order to achieve a longitudinal resolution on the femtosecond time scale. In this paper we present the TDS measurement systems to be used at SwissFEL, with a particular emphasis on the new C-band device, including hardware, lattice layout and beam optics.  
 
TUPSO15 Beam Diagnostic Requirements for the Next Generation Light Source linac, emittance, feedback, FEL 242
 
  • S. De Santis, J.M. Byrd, J.N. Corlett, P. Emma, D. Filippetto, M. Placidi, H.J. Qian, F. Sannibale
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The NGLS project consists in a 2.4 GeV superconducting linac accelerating sub-1 μm normalized emittance bunches used to produce high intensity soft X-ray short pulses from multiple FEL beamlines. The 1 MHz bunch repetition rate, and the consequent high beam power, present special challenges, but also opportunities, in the design of the various electron beam diagnostic devices. The wide range of beam characteristics, from the photoinjector to the undulators, require the adoption of different diagnostics optimized to each machine section and to the specific application of each individual measurement. In this paper we present our plans for the NGLS beam diagnostics, discussing the special requirements and challenges.
 
 
TUPSO39 Development of a Photo Cathode Laser System for Quasi Ellipsoidal Bunches at PITZ laser, electron, polarization, cathode 303
 
  • M. Krasilnikov, M. Khojoyan, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • A. Andrianov, E. Gacheva, E. Khazanov, S. Mironov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: The work is funded by the German Federal Ministry of education and Research, project 05K10CHE “Development and experimental test of a laser system for producing quasi 3D ellipsoidal laser pulses”.
Cathode laser pulse shaping is one of the key issues for high brightness photo injector optimization. A flat-top temporal profile of the cylindrical pulses reduces significantly the transverse emittance of space charge dominated beams. As a next step towards further improvement in photo injector performance a 3D pulse shaping is considered. An ellipsoid with uniform photon density is the goal of studies in the frame of a Joint German-Russian Research Group, including the Institute of Applied Physics (Nizhny Novgorod), Joint Institute of Nuclear Research (Dubna) and the Photo Injector test facility at DESY, Zeuthen site (PITZ). The major purpose of the project is the development of a laser system capable of producing 3D quasi ellipsoidal bunches and supporting a bunch train structure close to the European XFEL specifications. The laser pulse shaping is realized using the spatial light modulator technique. The laser pulse shape diagnostics based on a cross-correlator is under development as well. Experimental tests of the new laser system with electron beam production are foreseen at PITZ. First results on the quasi ellipsoidal laser pulse shaping will be reported.
 
 
TUPSO81 Challenges for Detection of Highly Intense FEL Radiation: Photon Beam Diagnostics at FLASH1 and FLASH2 FEL, photon, electron, radiation 417
 
  • K.I. Tiedtke, M. Braune, G. Brenner, S. Dziarzhytski, B. Faatz, J. Feldhaus, B. Keitel, M. Kuhlmann, H. Kühn, E. Plönjes, A.A. Sorokin, R. Treusch
    DESY, Hamburg, Germany
 
  In spite of the evident progress in the development of FEL facilities, the characterization of important FEL photon beam parameters during FEL-commissioning and user experiments is still a great challenge. In particular pulse-resolved photon beam characterization is essential for most user experiments, but the unique properties of FEL radiation properties such as extremely high peak powers and short pulse lengths makes the shot-to-shot monitoring of important parameters very difficult. Therefore, sophisticated concepts have been developed and used at FLASH in order to measure radiation pulse intensity, beam position and spectral as well as temporal distribution – always coping with the highly demanding requirements of user experiments as well as machine operation. Here, an overview on the photon diagnostic devices operating at FLASH and FLASH II will be presented, with emphasizes on the pulse resolving intensity and energy detectors based on photoionization of rare gases.  
 
TUPSO84 SLAC RF Gun Photocathode Test Facility gun, laser, emittance, vacuum 427
 
  • T. Vecchione, A. Brachmann, W.J. Corbett, M.J. Ferreira, S. Gilevich, E.N. Jongewaard, H. Loos, J. Sheppard, S.P. Weathersby, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.
A RF gun photocathode test facility has been commissioned at SLAC. The facility consists of a S-band gun, high power RF, a UV drive laser and beam diagnostics. Here we report on the capabilities of the facility demonstrated during commissioning. Currently the facility is being used to study in-situ laser processing of copper photocathodes. In the future the facility will be used to study fundamental gun and photocathode performance limitations and enhancement strategies. Eventually it is envisioned to integrate a load lock and plug into the gun enabling the evaluation of high performance surface sensitive semiconductor photocathodes and the incorporation of ex-situ surface science analytical techniques.
 
 
TUPSO89 A Femtosecond Resolution Electro-optic Diagnostic Using a Nanosecond-pulse Laser laser, FEL, target, optics 447
 
  • D.A. Walsh, W.A. Gillespie
    University of Dundee, Nethergate, Dundee, Scotland, United Kingdom
  • S.P. Jamison
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S.P. Jamison
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: This project has been funded by CERN as part of the CLIC-UK programme Contract Number KE1865/DG/CLIC
Electro-optic diagnostics with a target time resolution of 20fs RMS, and with intrinsically improved stability and reliability, are being developed. The new system is based on explicit temporal measurement of an electro-optically upconverted pulse, following interaction of the bunch with a quasi-CW probe pulse. The electro-optic effect generates an “optical-replica” of the longitudinal charge distribution from the narrow-bandwidth probe, simultaneously up-converting the bunch spectrum to optical frequencies. By using Frequency Resolved Optical Gating (FROG), an extension of autocorrelation, the optical replica can then be characterised on a femtosecond time scale. This scheme therefore bypasses the requirement for unreliable femtosecond laser systems. The high pulse energy required for single-shot pulse measurement via FROG will be produced through optical parametric amplification of the optical-replica pulses. The complete system will be based on a single nanosecond-pulse laser – resulting in a reliable system with greatly relaxed timing requirements.
 
 
TUPSO91 FEL R&D Within LA3NET laser, electron, pick-up, ion 452
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by the EU under Grant Agreement 289191.
The detailed diagnostics of the shortest beam pulses in free-electron lasers still pose significant challenges to beam instrumentation. Electro-optical methods are a promising approach for the non-intercepting measurement of electron bunches with a time resolution of better than 50 fs, but suitable optical materials need to be better understood and carefully studied. In addition, adequate timing systems with stability in the fs regime based on mode-locked fibre laser optical clocks, and actively length-stabilised optical fibre distribution require further investigation. Within the EU-funded LA³NET project these important problems are being addressed by an international consortium of research centres, universities, and industry partners. This contribution gives an overview of the LA3NET project and results from initial studies in both areas. It also describes the events, such as schools, topical workshops and conferences that LA3NET will organize.
 
 
WEPSO27 Recent LCLS Performance From 250 to 500 eV FEL, undulator, electron, laser 554
 
  • R.H. Iverson, J. Arthur, U. Bergmann, C. Bostedt, J.D. Bozek, A. Brachmann, W.S. Colocho, F.-J. Decker, Y. Ding, Y. Feng, J.C. Frisch, J.N. Galayda, T. Galetto, Z. Huang, E.M. Kraft, J. Krzywinski, J.C. Liu, H. Loos, X.S. Mao, S.P. Moeller, H.-D. Nuhn, A.A. Prinz, D.F. Ratner, T.O. Raubenheimer, S.H. Rokni, W.F. Schlotter, P.M. Schuh, T.J. Smith, M. Stanek, P. Stefan, M.K. Sullivan, J.L. Turner, J.J. Turner, J.J. Welch, J. Wu, F. Zhou
    SLAC, Menlo Park, California, USA
  • P. Emma
    LBNL, Berkeley, California, USA
  • R. Soufli
    LLNL, Livermore, California, USA
 
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515 and BES.
The Linac Coherent Light Source is an X-ray free-electron laser at the SLAC National Accelerator Laboratory. It produces coherent soft and hard X-rays with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources and a range of pulse durations from 500 to <10 fs. The facility has been operating at X-ray energy from 500 to 10,000eV. Users have expressed great interest in doing experiments with X-Rays near the carbon absorption edge at 284eV. We describe the operation and performance of the LCLS in the newly established regime between 250 and 500eV.
[1] Emma, P. et al., “First lasing and operation of an ˚angstrom-wavelength free-electron laser,” Nature Pho-
ton. 4(9), 641–647 (2010).
 
 
WEPSO28 Fast Electron Beam and FEL Diagnostics at the ALICE IR-FEL at Daresbury Laboratory FEL, electron, cavity, laser 557
 
  • F. Jackson, D. Angal-Kalinin, D.J. Dunning, J.K. Jones, A. Kalinin, T.T. Thakker, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • D. Angal-Kalinin, D.J. Dunning, J.K. Jones, N. Thompson
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The ALICE facility at Daresbury Laboratory is an energy recovery based infra-red free electron laser of the oscillator type that has been operational since 2010. Recently fast diagnostics have been installed to perform combined measurements on pulse-by pulse FEL pulse energy and bunch-by-bunch electron bunch position and arrival time. These measurements have highlighted and quantified fast instabilities in the electron beam and consequently the FEL output, and are presented and discussed here.  
 
WEPSO50 FLASH2 Beamline and Phontondiagnostics Concepts photon, laser, electron, undulator 614
 
  • E. Plönjes, B. Faatz, J. Feldhaus, M. Kuhlmann, K.I. Tiedtke, R. Treusch
    DESY, Hamburg, Germany
 
  The FLASH II project will upgrade the soft X-ray free electron laser FLASH at DESY into a multi-beamline FEL user facility with the addition of a second undulator line FLASH2. The present FLASH linear accelerator will drive both undulator lines and FLASH2 will be equipped with variable-gap undulators to be able to deliver two largely independent wavelengths to user endstations at FLASH1 and FLASH2 simultaneously. A new experimental hall will offer space for up to seven user endstations, some of which will be installed permanently. The beamline system will be set up to cover a wide wavelength range with up to three beamlines capable of delivering the 5th harmonic at 0.8 nm and a fundamental in the water window while others will cover the longer wavelengths of 6 - 40 nm and beyond. Photon diagnostics have been developed for many years at FLASH and are in routine operation. Online measurements of intensity, position, wavelength, wavefront, and pulse length are optimized as well as photon beam manipulation tools such as a gas absorber and filters. Civil construction and installations of FLASH II are on-going and first beam is expected for early 2014.