Keyword: electron
Paper Title Other Keywords Page
MOCOXBS03 Status of Novosibirsk ERL FEL, radiation, operation, gun 5
 
  • N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  The Novosibirsk ERL is dedicated electron beam source for three free electron lasers operating in the wavelength range 8 - 240 micron at average power up to 0.5 kW and peak power about 1 MW. Radiation users works at 8 user stations performing biological, chemical, physical and medical research. The Novosibirsk ERL is the first and the only four-turn ERL in the world. Its peculiar features include the normal-conductive 180 MHz accelerating system, the DC electron gun with the grid thermionic cathode, three operation modes of the magnetic system, and a rather compact (6×40 m2) design. The facility has been operating for users of terahertz radiation since 2004. The status of the installation and plans are described.  
slides icon Slides MOCOXBS03 [6.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-MOCOXBS03  
About • paper received ※ 13 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCOXBS05 Status of the MESA ERL Project experiment, linac, cavity, MMI 14
 
  • F. Hug, K. Aulenbacher, R.G. Heine, D. Simon
    KPH, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher, S. Friederich
    HIM, Mainz, Germany
  • S. Friederich, P. Heil, R.F.K. Kempf, C. Matejcek
    IKP, Mainz, Germany
 
  Funding: This work has been supported by DFG through the PRISMA+ cluster of excellence EXC 2118/2019 and by the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.
MESA is a recirculating superconducting accelerator under construction at Johannes Gutenberg-Universität Mainz. It can be operated in either external beam or ERL mode and will be used for high precision particle physics experiments. The operating beam current and energy in EB mode is 0.15 mA with polarized electrons at 155 MeV. In ERL mode a polarized beam of 1 mA at 105 MeV will be available. In a later construction stage of MESA the beam current in ERL-mode shall be upgraded to 10 mA (unpolarized). Civil construction and commissioning of components like electron gun, LEBT and SRF modules have been started already. We will give a project overview including the accelerator layout, the current status and an outlook to the next construction and commissioning steps.
 
slides icon Slides MOCOXBS05 [14.029 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-MOCOXBS05  
About • paper received ※ 14 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOCOYBS04 Electrodisintegration of 16O and the Rate Determination of the Radiative Alpha Capture on 12C at Stellar Energies experiment, multipole, photon, target 18
 
  • I. Friščić, T.W. Donnelly, R. Milner
    MIT, Cambridge, Massachusetts, USA
 
  Funding: This research is supported by the U.S. Department of Energy Office of Nuclear Physics (Grant No. DE-FG02-94ER40818)
For over five decades one of the most important goals of experimental nuclear astrophysics has been to reduce the uncertainty in the S-factor of radiative alpha capture on 12C at stellar energies. We have developed a simple model, which relates the radiative capture reaction and the exclusive electrodisintegration reaction. We then show that by measuring the rate of electrodisintegration of 16O in a high luminosity experiment using a state-of-the-art gas target and a new generation of energy-recovery linear (ERL) electron accelerators under development, it is possible to significantly improve the statistical uncertainty of the radiative alpha capture on 12C in terms of E1 and E2 S-factors in the astrophysically interesting region, which are the key inputs for any nucleosynthesis and stellar evolution models. The model needs to be validated experimentally, but, if successful, it can be used to improve the precision of other astrophysically-relevant, radiative capture reactions, thus opening a significant avenue of research that spans nuclear structure, astrophysics and high-power accelerator technology.
 
slides icon Slides MOCOYBS04 [4.003 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-MOCOYBS04  
About • paper received ※ 15 September 2019       paper accepted ※ 04 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCOXBS01 Beam Halo in Energy Recovery Linacs operation, emittance, linac, collimation 23
 
  • O.A. Tanaka
    KEK, Ibaraki, Japan
 
  The beam halo mitigation is a very important challenge for reliable and safe operation of a high energy machine. Since Energy Recovery Linacs (ERLs) are known to produce high energy electron beams of high virtual power and high density, the beam halo and related beam losses should be properly mitigated to avoid a direct damage of the equipment, an unacceptable increase in the vacuum pressure, a radiation activation of the accelerator components etc. To keep the operation stable, one needs to address all possible beam halo formation mechanisms, including those unique to each machine that can generate beam halo. Present report is dedicated to the beam halo related activities at the Compact ERL at KEK, and our operational experience with respect to the beam halo.  
slides icon Slides TUCOXBS01 [4.480 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-TUCOXBS01  
About • paper received ※ 16 September 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCOXBS03 Beam Dynamics Layout of the MESA ERL linac, experiment, operation, acceleration 28
 
  • F. Hug, K. Aulenbacher, D. Simon, C.P. Stoll, S.D.W. Thomas
    KPH, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
 
  Funding: This work has been supported by DFG through the PRISMA+ cluster of excellence EXC 2118/2019 and by the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.
The MESA project is currently under construction at Johannes Gutenberg-Universität Mainz. It will be used for high precision particle physics experiments in two different operation modes: external beam (EB) mode (0.15 mA; 155 MeV) and energy recovery (ERL) mode (1 mA; 105 MeV). The recirculating main linac follows the concept of a double sided accelerator design with vertical stacking of return arcs. Up to three recirculations are possible. Acceleration is done by four TESLA/XFEL 9-cell SRF cavities located in two modified ELBE cryomodules. Within this contribution the recirculation optics for MESA will be presented. Main goals are achieving best energy spread at the experimental setups in recirculating ERL and non-ERL operation and providing small beta-functions within the cryomodules for minimizing HOM excitation at high beam currents.
 
slides icon Slides TUCOXBS03 [5.077 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-TUCOXBS03  
About • paper received ※ 16 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECOXBS02 High Current Performance of Alkali Antimonide Photocathode in LEReC DC Gun cathode, operation, gun, synchrotron 61
 
  • M. Gaowei, J. Cen, A.V. Fedotov, D. Kayran, D. Lehn, C.J. Liaw, T. Rao, J.E. Tuozzolo, J. Walsh, E. Wang
    BNL, Upton, New York, USA
 
  The bi-alkali antimonide photocathode are chosen as the electron source material for the Low Energy RHIC electron Cooling (LEReC) project at RHIC, BNL based on its requirement for high bunch charge and long-time beam operation. This report presents the design and operation of the cathode deposition and transportation systems for the LEReC photocathodes, the cathode performance under the high current operation in the LEReC DC gun, as well as the characterization of the damaged cathodes from the long-time operation.  
slides icon Slides WECOXBS02 [2.804 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WECOXBS02  
About • paper received ※ 17 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECOXBS03 Bench Test Results of CW 100 mA Electron RF Gun for Novosibirsk ERL based FEL cathode, cavity, gun, radiation 65
 
  • V. Volkov, V.S. Arbuzov, E. Kenzhebulatov, E.I. Kolobanov, A.A. Kondakov, E.V. Kozyrev, S.A. Krutikhin, I.V. Kuptsov, G.Y. Kurkin, S.V. Motygin, A.A. Murasev, V.K. Ovchar, V.M. Petrov, A.M. Pilan, V.V. Repkov, M.A. Scheglov, I.K. Sedlyarov, S.S. Serednyakov, O.A. Shevchenko, S.V. Tararyshkin, A.G. Tribendis, N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
  • E.V. Kozyrev, S.S. Serednyakov, N.A. Vinokurov
    NSU, Novosibirsk, Russia
  • A.G. Tribendis
    NSTU, Novosibirsk, Russia
  • N.A. Vinokurov
    KAERI, Daejon, Republic of Korea
  • N.A. Vinokurov
    UST, Daejeon City, Republic of Korea
  • N.A. Vinokurov
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
 
  Continuous wave (CW) 100 mA electron rf gun for injecting the high-quality 300-400 keV electron beam in Novosibirsk Energy Recovery Linac (ERL) and driving Free Electron Laser (FEL) was developed, built, and commissioned at BINP SB RAS. The RF gun consists of normal conducting 90 MHz rf cavity with a gridded thermionic cathode unit. Bench tests of rf gun is confirmed good results in strict accordance with our numerical calculations and showed reliable work, unpretentious for vacuum conditions and stable in long-term operation. The design features of different components of the rf gun are presented. Preparation and commissioning experience is discussed. The latest beam results are reported.  
slides icon Slides WECOXBS03 [3.201 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WECOXBS03  
About • paper received ※ 14 September 2019       paper accepted ※ 11 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC01 Status and Future Perspective of the TRIUMF E-Linac linac, radiation, MMI, gun 70
 
  • S.D. Rädel, M. Alcorta, F. Ames, E. Chapman, K. Fong, B. Humphries, O.K. Kester, D. Kishi, S.R. Koscielniak, R.E. Laxdal, Y. Ma, T. Planche, M. Rowe, V.A. Verzilov
    TRIUMF, Vancouver, Canada
 
  The currently installed configuration of TRIUMF’s superconducting electron linac (e-linac) can produce an electron beam up to 30MeV and 10mA. Low beam power commissioning of the segment spanning the electron gun to high energy dump took place in summer 2018 with an attained beam energy of 25MeV. As the driver of the ARIEL project, the e-linac will deliver electrons to a photo-converter target station for the production of neutron-rich rare isotope beams (RIB) via photo fission. The e-linac will have sufficient beam power to support the demands of other user community rare isotope beams. This driver accelerator could server as a production machine for high field THz radiation and as irradiation center. A recirculation of the beam would be beneficial for RIB production at higher beam energy and would allow for high bunch compression to generate THz radiation. Such a system would also allow for the investigation of a high beam intensity energy recovery linac. To this end, TRIUMF is investigating the design of such a recirculation and the beam dynamics as a first step.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC01  
About • paper received ※ 01 October 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC08 Dispersion Matching With Space Charge in MESA space-charge, injection, recirculation, experiment 74
 
  • A. Khan, O. Boine-Frankenheim
    TEMF, TU Darmstadt, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
 
  Funding: Supported by the DFG through GRK 2128.
For intense electron bunches traversing through bends, as for example the recirculation arcs of an Energy-Recovery Linac (ERL), dispersion matching with space charge of an arc into the subsequent radio-frequency (RF) structure is essential to maintain the beam quality. We show that beam envelopes and dispersion along the bends and recirculation arcs of an ERL, including space charge forces, can be matched to adjust the beam to the parameters of the subsequent section. The present study is focused on a small-scale, double-sided recirculating linac Mainz Energy-recovering Superconducting Accelerator (MESA). MESA is an under construction two pass ERL at the Johannes Gutenberg-Universit\"at Mainz, which should deliver a continuous wave (CW) beam at 105 MeV for physics experiments with a pseudo-internal target. In this work, a coupled transverse-longitudinal beam matrix approach for matching with space charge in MESA is employed.
 
poster icon Poster WEPNEC08 [1.190 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC08  
About • paper received ※ 12 September 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC10 Investigation on the Ion Clearing of Multi-Purpose Electrodes of BERLinPro simulation, brightness, linac, emittance 80
 
  • G. Pöplau
    COMPAEC e.G., Rostock, Germany
  • A. Meseck
    KPH, Mainz, Germany
  • A. Meseck
    HZB, Berlin, Germany
 
  High-brightness electron beams provided by modern accelerators require several measures to preserve their high quality and to avoid instabilities. The mitigation of the impact of residual ions is one of these measures. It is particularly important if high bunch charges in combination with high repetition rates are aimed for. This is because ions can be trapped in the strong negative electrical potential of the electron beam causing emittance blow-up, increased beam halo and longitudinal and transverse instabilities. One ion-clearing strategy is the installation of clearing electrodes. Of particular interest in this context is the performance of multi-purpose electrodes, which are designed such that they allow for a simultaneous ion-clearing and beam-position monitoring. Such electrodes will be installed in the BERLinPro facility. In this contribution, we present numerical studies of the performance of multi-purpose clearing-electrodes planned for BERLinPro, i.e. we investigate the behavior of ions generated by electron bunches while passing through the field of the electrodes. Hereby, several ion species and configurations of electrodes are considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC10  
About • paper received ※ 11 October 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC11 X-Ray ICS Source Based on Modified Push-Pull ERLs cavity, photon, radiation, linac 84
 
  • I. Drebot, A. Bacci, S. Cialdi, L. Faillace, D. Giannotti, M. Rossetti Conti, A.R. Rossi, L. Serafini, M. Statera, V. Torri
    INFN-Milano, Milano, Italy
  • A. Bosotti, F. Broggi, D. Giove, P. Michelato, L. Monaco, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • P. Cardarelli, M. Gambaccini, G. Paternò, A. Taibi
    INFN-Ferrara, Ferrara, Italy
  • A. Esposito, A. Gallo, C. Vaccarezza
    INFN/LNF, Frascati, Italy
  • G. Galzerano
    POLIMI, Milano, Italy
  • M. Gambaccini
    UNIFE, Ferrara, Italy
  • G. Mettivier, P. Russo
    UniNa, Napoli, Italy
  • V. Petrillo, F. Prelz
    Universita’ degli Studi di Milano & INFN, Milano, Italy
  • E. Puppin
    Politecnico/Milano, Milano, Italy
  • A. Sarno
    INFN-Napoli, Napoli, Italy
 
  We present the conceptual designs of BriXS and BriXSino (a minimal test-bench demonstrator of proof of principle) for a compact X-ray Source based on innovative push-pull ERLs. BriXS, the first stage of the Marix project, is a Compton X-ray source based on superconducting cavity technology with energy recirculation and on a laser system in Fabry-Pérot cavity at a repetition rate of 100 MHz, producing 20-180 keV radiation for medical applications. The energy recovery scheme based on a modified folded push-pull CW-SC twin Linac ensemble allows to sustain MW-class beam power with almost just one hundred kW active power dissipation/consumption.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC11  
About • paper received ※ 20 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC13 Preliminary Investigations and Pre-Research Scheme of High Average Current Electron Injectors at IMP gun, cathode, high-voltage, SRF 90
 
  • Q.T. Zhao, J.C. Yang, Z.M. Zhang, H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  High average current electron injectors are desired by high average beam power SRF linacs. With respect to the different linac application, different beam qualities are required. Two kinds of electron gun are planned for future projects at IMP, one is thermionic electron gun dedicated for high average current, and another one is photocathode gun which is for high average current and high beam quality or even with high polarization. Current status and development of the high average current electron source are investigated and summarized. The thermionic gun studies are planned and the feasible types of gun for the future Electron ion collider of China (EicC) project are also proposed. The pre-research scheme of these two kinds of electron guns are schemed, which will be the start of high average current and high-quality electron source development at Institute of modern physics (IMP), Chinese academy of sciences (CAS).  
poster icon Poster WEPNEC13 [0.827 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC13  
About • paper received ※ 22 September 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC16 Electron Outcoupling System of Novosibirsk Free Electron Laser Facility - Beam Dynamics Calculation and the First Experiments undulator, FEL, coupling, radiation 98
 
  • Ya.V. Getmanov, A.S. Matveev, O.A. Shevchenko, N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
  • Ya.V. Getmanov, A.S. Matveev, N.A. Vinokurov
    NSU, Novosibirsk, Russia
 
  The radiation power of the FEL with optical cavity can be limited by the overheating of reflecting mirrors. In the electron outcoupling scheme electron beam radiates the main power at a slight angle to the optical axis. For this, it is necessary to divide undulator by a dipole magnet at least in two parts - the first for the electron beam bunching in the field of the main optical mode, and the second for the power radiation by deflected beam. Electron outcoupling system is installed on the third FEL based on the multiturn energy recovery linac of the Novosibirsk Free Electron Laser facility (NovoFEL). It consists of three undulators, dipole correctors and two quadrupole lenses assembled between them. There are two different configurations of the system since the electrons can be deflected in either the second or the third undulator. The electron beam dynamics calculations and the results of the first experiments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC16  
About • paper received ※ 01 October 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC17 Developments in Photocathode R&D at STFC Daresbury Laboratory: New Transverse Energy Spread Measurements and the Development of a Multi-Alkali Photocathode Preparation Facility cathode, vacuum, emittance, laser 103
 
  • L.B. Jones, B.L. Militsyn, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • L.B. Jones, D.P. Juarez-Lopez, B.L. Militsyn, T.C.Q. Noakes, L.A.J. Soomary, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D.P. Juarez-Lopez, L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Photocathode R&D activity within ASTeC is focussed on further development of the tools required for the preparation and characterisation of high performance photocathodes for X-FELs. Our Transverse Energy Spread Spectrometer (TESS)* experimental facility can be used with III-V semiconductor, multi-alkali and metal photocathodes to measure transverse and longitudinal energy distributions of the emitted electrons. Recently TESS has been upgraded to increase the instrument sensitivity for operation with low QE materials under UV illumination. Our R&D facilities also include in-vacuum quantum efficiency measurement, XPS, STM, plus ex-vacuum optical and STM microscopy for surface metrology. Intrinsic photocathode emittance is affected by many factors including illumination wavelength and surface roughness. We present energy distribution measurements for electrons emitted from copper, niobium and zirconium photocathode samples with measured levels of surface roughness under illumination by wavelengths between 256 and 291 nm. We also present an update on progress to establish a multi-alkali photocathode preparation facility to support the CLARA** linear accelerator.
* Proc. FEL’13, TUPPS033, 290-293
** CLARA Conceptual Design Report J. Inst. 9 T05001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC17  
About • paper received ※ 04 October 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC19 Optimisation of the PERLE Injector booster, emittance, gun, cavity 107
 
  • B. Hounsell, M. Klein, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • B. Hounsell, B.L. Militsyn, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B. Hounsell, W. Kaabi
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  The injector for PERLE, a proposed electron Energy Recovery Linac (ERL) test facility for the LHeC and FCC-eh projects, is intended to deliver 500 pC bunches at a repetition rate of 40.1 MHz for a total beam current of 20 mA. These bunches must have a bunch length of 3 mm rms and an energy of 7 MeV at the entrance to the first linac pass while simultaneously achieving a transverse emittance of less than 6 mm mrad. The injector is based around a DC photocathode electron gun, followed by a focusing and normal conducting bunching section, a booster with 5 independently controllable SRF cavities and a merger into the main ERL. A design for this injector from the photocathode to the exit of the booster is presented. This design was simulated using ASTRA for the beam dynamics simulations and optimized using the many objective optimization algorithm NSGAIII. The use of NSGAIII allows more than three beam parameters to be optimised simultaneously and the trade-offs between them to be explored.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC19  
About • paper received ※ 01 October 2019       paper accepted ※ 11 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC21 Decoupling Cathode and Lattice Emittance Contributions from a 100 pC, 100 MeV Electron Injector System emittance, cathode, cavity, FEL 112
 
  • N.P. Norvell
    SLAC, Menlo Park, California, USA
  • M.B. Andorf, I.V. Bazarov, C.M. Gulliford, J.M. Maxson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We present simulation results to decouple the emittance contributions that are intrinsic from the injector lattice versus emittance contributions due to the quality of the cathode out of a 100 MeV electron injector system. Using ASTRA driven by the NSGA-II genetic algorithm, we optimized the LCLS-II injector system with a zero emittance cathode. We then imposed FEL specific energy constraints and show how the Pareto Front solution shifts. Lastly, we reoptimized at various cathode emittances to map out the dependence of cathode emittance versus final emittance out of the injector system. We then determined the cathode quality needed to hit a 0.1 mm mrad 95% rms transverse emittance specification out of the current LCLS-II injector system.  
poster icon Poster WEPNEC21 [3.227 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC21  
About • paper received ※ 01 October 2019       paper accepted ※ 07 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC25 Research on Alkali Antimonide Photocathode Fabrication Recipe at PKU cathode, emittance, laser, vacuum 120
 
  • D.M. Ouyang, L.W. Feng, S. Huang, K.X. Liu, S.W. Quan, H.M. Xie, X.K. Zhang, S. Zhao
    PKU, Beijing, People’s Republic of China
 
  Low emittance, high QE and long lifetime photocathode is widely studied for X-ray Free Electron Laser (XFEL)and Energy Recovery Linacs (ERL) applications. A deposition system for alkali antimonide photocathode (K2CsSb, Cs3Sb etc.) is being commissioned at Peking University. In this paper, we present our experimental results on alkali antimonide photocathode with this deposition system. We successfully fabricated Cs3Sb photocathode on oxygen free copper, p-type Si (100) and Mo substrates with QE of 1.4%, 2.6% and 2.6% respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC25  
About • paper received ※ 27 September 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCOYBS02 High Charge High Current Beam From BNL 113 MHz SRF Gun cathode, gun, cavity, laser 145
 
  • I. Pinayev, I. Ben-Zvi, J.C. Brutus, M. Gaowei, T. Hayes, Y.C. Jing, V. Litvinenko, J. Ma, K. Mihara, G. Narayan, I. Petrushina, F. Severino, K. Shih, J. Skaritka, E. Wang, G. Wang, Y.H. Wu
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • I. Petrushina, Y.H. Wu
    SUNY SB, Stony Brook, New York, USA
  • K. Shih
    SBU, Stony Brook, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 113 MHz superconducting gun is used an electron source for the coherent electron cooling experiment. The unique feature of the gun is that a photocathode is held at room temperature. It allowed to preserve the quantum efficiency of Cs2KSb cathode which is adversely affected by cryogenic temperatures. Relatively low frequency permitted fully realize the accelerating field gradient what in turn helps to achieve 10 nC charge and 0.3 microns normalized emittance. We present the achieved performance and operational experience as well.
 
slides icon Slides THCOYBS02 [4.350 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-THCOYBS02  
About • paper received ※ 03 September 2019       paper accepted ※ 08 July 2020       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCOXBS03 Beam Dynamics Simulations for the Twofold ERL Mode at the S-DALINAC* linac, acceleration, GUI, cavity 155
 
  • F. Schließmann, M. Arnold, M. Dutine, J. Pforr, N. Pietralla, M. Steinhorst
    TU Darmstadt, Darmstadt, Germany
 
  Funding: *Work supported by DFG through GRK 2128 and BMBF through grant No. 05H18RDRB2
The recirculating superconducting electron accelerator S-DALINAC [1] at TU Darmstadt is capable to run as a onefold or twofold Energy Recovery Linac (ERL) with a maximum energy of approximately 34 or 68 MeV in ERL mode, respectively. Since the maximum kinetic energy for the twofold ERL mode at injection is less than 8 MeV (v/c<0.9982) and since several multi-cell cavities designed for v/c=1 are used in the main accelerator, the electrons suffer from the effect of phase slippage. Therefore, beam dynamics simulations for the 6D phase space were performed in order to provide a sufficient beam guiding.
[1] N. Pietralla, Nuclear Physics News, Vol. 28, No. 2, 4 (2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-FRCOXBS03  
About • paper received ※ 17 October 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCOYBS01 Working Group Summary: ERL Facilities linac, operation, FEL, gun 171
 
  • M. Abo-Bakr
    HZB, Berlin, Germany
  • M. Arnold
    TU Darmstadt, Darmstadt, Germany
 
  To be added.  
slides icon Slides FRCOYBS01 [4.193 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-FRCOYBS01  
About • paper received ※ 20 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)