Keyword: FEL
Paper Title Other Keywords Page
MOCOXBS03 Status of Novosibirsk ERL electron, radiation, operation, gun 5
 
  • N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  The Novosibirsk ERL is dedicated electron beam source for three free electron lasers operating in the wavelength range 8 - 240 micron at average power up to 0.5 kW and peak power about 1 MW. Radiation users works at 8 user stations performing biological, chemical, physical and medical research. The Novosibirsk ERL is the first and the only four-turn ERL in the world. Its peculiar features include the normal-conductive 180 MHz accelerating system, the DC electron gun with the grid thermionic cathode, three operation modes of the magnetic system, and a rather compact (6×40 m2) design. The facility has been operating for users of terahertz radiation since 2004. The status of the installation and plans are described.  
slides icon Slides MOCOXBS03 [6.521 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-MOCOXBS03  
About • paper received ※ 13 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC16 Electron Outcoupling System of Novosibirsk Free Electron Laser Facility - Beam Dynamics Calculation and the First Experiments electron, undulator, coupling, radiation 98
 
  • Ya.V. Getmanov, A.S. Matveev, O.A. Shevchenko, N.A. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
  • Ya.V. Getmanov, A.S. Matveev, N.A. Vinokurov
    NSU, Novosibirsk, Russia
 
  The radiation power of the FEL with optical cavity can be limited by the overheating of reflecting mirrors. In the electron outcoupling scheme electron beam radiates the main power at a slight angle to the optical axis. For this, it is necessary to divide undulator by a dipole magnet at least in two parts - the first for the electron beam bunching in the field of the main optical mode, and the second for the power radiation by deflected beam. Electron outcoupling system is installed on the third FEL based on the multiturn energy recovery linac of the Novosibirsk Free Electron Laser facility (NovoFEL). It consists of three undulators, dipole correctors and two quadrupole lenses assembled between them. There are two different configurations of the system since the electrons can be deflected in either the second or the third undulator. The electron beam dynamics calculations and the results of the first experiments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC16  
About • paper received ※ 01 October 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPNEC21 Decoupling Cathode and Lattice Emittance Contributions from a 100 pC, 100 MeV Electron Injector System emittance, cathode, electron, cavity 112
 
  • N.P. Norvell
    SLAC, Menlo Park, California, USA
  • M.B. Andorf, I.V. Bazarov, C.M. Gulliford, J.M. Maxson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  We present simulation results to decouple the emittance contributions that are intrinsic from the injector lattice versus emittance contributions due to the quality of the cathode out of a 100 MeV electron injector system. Using ASTRA driven by the NSGA-II genetic algorithm, we optimized the LCLS-II injector system with a zero emittance cathode. We then imposed FEL specific energy constraints and show how the Pareto Front solution shifts. Lastly, we reoptimized at various cathode emittances to map out the dependence of cathode emittance versus final emittance out of the injector system. We then determined the cathode quality needed to hit a 0.1 mm mrad 95% rms transverse emittance specification out of the current LCLS-II injector system.  
poster icon Poster WEPNEC21 [3.227 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-WEPNEC21  
About • paper received ※ 01 October 2019       paper accepted ※ 07 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRCOYBS01 Working Group Summary: ERL Facilities linac, operation, electron, gun 171
 
  • M. Abo-Bakr
    HZB, Berlin, Germany
  • M. Arnold
    TU Darmstadt, Darmstadt, Germany
 
  To be added.  
slides icon Slides FRCOYBS01 [4.193 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-FRCOYBS01  
About • paper received ※ 20 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)