Electrodisintegration of ¹⁶O and the Rate Determination of the Radiative Alpha Capture on ¹²C at Stellar Energies

lvica Friščić 16 Sep. 2019 ERL 2019, Berlin, Germany

¹²C/¹⁶O abundance

- Helium burning stage: $3\alpha \rightarrow {}^{12}C+\gamma$, and $\alpha + {}^{12}C \rightarrow {}^{16}O+\gamma$
- At T $\simeq 2 \cdot 10^8$ K, Gamow window for $\alpha + {}^{12}C$ is around $E_G \simeq 300$ keV and at the moment the rate is know with an uncertainty between 20% and 30%
- Affects evolution of massive stars -> nucleosynthesis of heavier elements
- White dwarfs: ignition of super nova type la
- End of stars: ¹⁶O rich star black hole, ¹²C rich star neutron star

T. A. Weawer and S. E. Woosley, Phys. Rep. 227 (1993) 335.

$\alpha + {}^{12}C \rightarrow {}^{16}O + \gamma$ cross section around E_G

- Large Coulomb barrier $\rightarrow \sigma \simeq 10^{-5}$ pb (direct measurement is not feasible)
- Around E_G the cross section is dominated by two components:
- → E1 component, $J^{\pi} = 1^{-}$: subthreshold state at 7.117 MeV and broad resonance at 9.59 MeV
- → E2 component, J^{π} = 2⁺: subthreshold state at 6.917 MeV and narrow resonance at 9.85 MeV

S(E)

 $\alpha + {}^{12}C \rightarrow {}^{16}O + \gamma$ S-factors

ERL 2019

How to extract $\sigma(E_{\rm G})$

- Direct measurements
- a) ${}^{12}C(\alpha, \gamma){}^{16}O$; (α beam) – angular distribution of γ is measured $\rightarrow S_{E1}$ and S_{E2}

b) $\alpha(^{12}C,^{16}O) \gamma$; (¹²C beam) – detection of ¹⁶O recoils \rightarrow S_{tot} Indirect measurements

a)
$$\beta$$
 decay of ¹⁶N: ¹⁶O^{*} $\rightarrow \alpha$ + ¹²C; \rightarrow S_{E1}

b) inverse reaction:

– photodisintegration of ¹⁶O: ¹⁶O(γ , α)¹²C

→ Bubble chamber R. J. Holt et al., (2018), arXiv:1809.10176

→ Time project. chamber M. Gai et al., JINST 5, P12004 (2010)

– electrodisintegration of ¹⁶O: ¹⁶O(e, e' α)¹²C; THIS TALK

I. Friščić, W. T. Donnelly and R. G. Milner, Phys. Rev. C 100, (2019) 025804

$$\frac{\sigma(\gamma + {}^{16}\text{O})}{\sigma(\alpha + {}^{12}\text{C})} = \frac{\mu c^2 E_{\alpha}^{cm}}{E_{\gamma}^2} \approx 42 \text{ (for } E_{\alpha}^{cm} = 1 \text{ MeV}$$

Advantage of ¹⁶O(e,e'α)¹²C

- inverse reaction: larger cross section than direct reaction
- new generation of e⁻ energy recovery linear (ERL) accelerators with I ≥ 10 mA: MESA, Univ. of Mainz, Germany, F. Hug et al., Proc. of LINAC'16 28, 313 (2017).
 CBETA, Cornell Univ., USA, D. Trbojevic et al., Proc. of IPAC'17 8, 1285 (2017).
- oxygen cluster gas-jet target with thickness > 10¹⁸ atoms/cm²
 MAGIX, Univ. of Mainz, Germany, S. Grieser et al., Nucl. Inst. Meth. Phys. Res. A 906, 120 (2018).

Luminosity > 10³⁵ 1/(cm² s)

Systematics from oxygen isotopes

• Oxygen isotope abundance: ¹⁶O 99.757%, ¹⁷O 0.038% and ¹⁸O 0.205%

 $Q(^{16}O \rightarrow \alpha + ^{12}C) = -7.162 \text{ MeV},$ $Q(^{17}O \rightarrow \alpha + ^{13}C) = -6.357 \text{ MeV}$ $Q(^{18}O \rightarrow \alpha + ^{14}C) = -6.228 \text{ MeV}$

 Photonuclear cross sections: natural abundance of O isotopes + depletion of ¹⁷O and ¹⁸O by factor 1000, and 5 ppmv for ¹⁴N

$$E_{\gamma} = E_{\alpha}^{cm} + 7.162 \text{ MeV}$$

https://wiki.jlab.org/ciswiki/index.php/Simulations_and_Backgrounds#Relevant_Theoretical_Cross_Sections

K. J. R. Rosman, P. D. P. Taylor, Pure Appl. Chem 71 (1999) 1593

Systematics from oxygen isotopes: Solution

• SRIM simulation: energy loss of α -particles in 2 mm wide oxygen jet, with a density of 6.65·10⁻⁴ g/cm³, E_e = 114 MeV, θ_e =15°, 1.0 $\leq E_{\alpha}^{cm} \leq$ 1.1 MeV

Virtual photon advantage

• SRIM simulation: angular spread of α -particles in 2 mm wide oxygen jet, with a density of 6.65 \cdot 10⁻⁴ g/cm³, E_e = 114 MeV, θ_e =15° and 35°, 1.0 $\leq E_{\alpha}^{cm} \leq$ 1.1 MeV

Detection of α -particles and other ions

- Requirements:
 - measure the total energy of the $\alpha\text{-particles}$ to about ${\sim}10\%$
 - distinguish between protons, α -particles and C-isotopes
 - measure the position to \sim mm and the timing to a few ns
 - ion detection system have to be blind to scattered e⁻ and photons
- Options:
 - Silicon detectors \rightarrow high position resolution, needs to be cooled to min. radiation damage
 - Micro-channel-plate electron (MCP) detector \rightarrow good timing resolution
 - Parallel-plate avalanche counter (PPAC) \rightarrow good timing resolution and position resolution
 - Time Projection Chamber \rightarrow reconstruction of the ion's trajectory

Kinematics: ${}^{16}O(e,e'\alpha){}^{12}C$

The cross section formulas

• Electrodisintegration of ¹⁶O:

$$\frac{d\sigma}{dE'_e d\Omega_e d\Omega_\alpha^{cm}} = \frac{M_\alpha M_{12C}}{8\pi^3 W} \frac{p_\alpha^{cm}}{(\hbar c)^3} \sigma_{Mott} (\tilde{v}_L R_L + \tilde{v}_T R_T + \tilde{v}_{LT} R_{LT} + \tilde{v}_{TT} R_{TT})$$
$$W = \sqrt{(M_{160} + \omega)^2 - q^2} \qquad E_\alpha^{cm} = W - W_{th}$$

A. S. Raskin and T. W. Donnelly, Ann. of Phys. 191 (1989)

• Direct reaction ${}^{12}C(\alpha, \gamma){}^{16}O$:

$$\frac{d\sigma}{d\Omega_{\gamma}^{cm}}\bigg|_{(\alpha,\gamma)} = \frac{M_{\alpha}M_{12C}}{2\pi W} \frac{p_{\alpha}^{cm}}{\hbar c} \frac{\alpha}{E_{\gamma}} R_{T}$$
$$W = \sqrt{M_{\alpha}^{2} + M_{12C}^{2} + 2M_{12C}E_{\alpha}^{lab}} \qquad E_{\alpha}^{cm} = \frac{M_{12C}}{M_{12C}+M_{\alpha}} E_{\alpha}^{lab}$$

Response functions for $J^{\pi} = 0^+$ nuclei

$$R_{L} = P_{0}(\cos \theta_{\alpha}) \left(|t_{C0}|^{2} + |t_{C1}|^{2} + |t_{C2}|^{2} \right) \qquad R_{T} = P_{0}(\cos \theta_{\alpha}) \left(|t_{E1}|^{2} + |t_{E2}|^{2} \right) + P_{1}(\cos \theta_{\alpha}) \left(2\sqrt{3}|t_{C0}||t_{C1}|\cos(\delta_{C1} - \delta_{C0}) + 4\sqrt{\frac{3}{5}}|t_{C1}||t_{C2}|\cos(\delta_{C2} - \delta_{C1}) \right) \qquad + P_{1}(\cos \theta_{\alpha}) \left(\frac{6}{\sqrt{5}}|t_{E1}||t_{E2}|\cos(\delta_{E2} - \delta_{E1}) \right) + P_{2}(\cos \theta_{\alpha}) \left(2|t_{C1}|^{2} + \frac{10}{7}|t_{C2}|^{2} + 2\sqrt{5}|t_{C0}||t_{C2}|\cos(\delta_{C2} - \delta_{C0}) \right) \qquad + P_{2}(\cos \theta_{\alpha}) \left(- |t_{E1}|^{2} + \frac{5}{7}|t_{E2}|^{2} \right) + P_{3}(\cos \theta_{\alpha}) \left(6\sqrt{\frac{3}{5}}|t_{C1}||t_{C2}|\cos(\delta_{C2} - \delta_{C1}) \right) \qquad + P_{3}(\cos \theta_{\alpha}) \left(-\frac{6}{\sqrt{5}}|t_{E1}||t_{E2}|\cos(\delta_{E2} - \delta_{E1}) \right) + P_{4}(\cos \theta_{\alpha}) \left(\frac{18}{7}|t_{C2}|^{2} \right) \qquad + P_{4}(\cos \theta_{\alpha}) \left(-\frac{12}{7}|t_{E2}|^{2} \right)$$

$$R_{TT} = -R_T \cos(2\phi_\alpha)$$

Matrix elements and coefficients

• Multipole matrix elements ($q_0 = 1.2 \text{ fm}^{-1}$):

$$t_{EJ} = \frac{\omega}{q} \left(\frac{q}{q_0}\right)^J a'_{EJ} \left[1 + \left(\frac{q}{q_0}\right)^2 b'_{EJ}(q)\right] e^{-\left(\frac{q}{q_0}\right)^2} \qquad t_{CJ} = \left(\frac{q}{q_0}\right)^J a'_{CJ} \left[1 + \left(\frac{q}{q_0}\right)^2 b'_{CJ}(q)\right] e^{-\left(\frac{q}{q_0}\right)^2}$$

(t_{C0} leading dependence cannot occur due to orthogonality of initial and final state)

• Long wavelength limit $(q \rightarrow 0)$ and continuity equation:

$$t_{EJ} \rightarrow -\sqrt{\frac{J+1}{J}} \left(\frac{\omega}{q}\right) t_{CJ} \qquad a'_{EJ} = -\sqrt{\frac{J+1}{J}} a'_{CJ}$$

S-factor modeling

• Second order polynomial fit to data $E_{\alpha}^{cm} < 1.7 \text{ MeV}$

Leading order coefficients

$$a'_{EJ} = \left(\frac{q_0}{\omega}\right)^J \sqrt{\frac{\hbar c \cdot p_\alpha^{cm} \cdot W}{2\alpha \cdot \omega \cdot M_\alpha M_{12C}}} \frac{S_{EJ}(E_\alpha^{cm}) \cdot e^{-2\pi\eta(E_\alpha^{cm})}}{E_\alpha^{cm}}; \quad J = 1, 2.$$

ERL 2019

Next-to-leading order coefficients

• No knowledge about next to leading order coefficients $b'_{EJ,CJ}$ with J = 1, 2

 \rightarrow Assuming $b'_{EJ,CJ} \approx 1$ and "+" sign

- No knowledge about C0 multipole and $b'_{C0} \cdot a'_{C0}$ \rightarrow Assuming $b'_{C0} \approx 1$ and "+" sign, **Case A** $a'_{C0} = a'_{E2}$ and **Case B** $a'_{C0} = 0.5a'_{E2}$
- For $E_{\alpha}^{cm} < 1.7$ MeV only Coulomb phase contributes:

$$\delta_{Cl} - \delta_{C0} = \delta_{El} - \delta_{E0} = \sum_{n=1}^{l} \arctan \frac{\eta}{l}$$

Differential cross section: ¹⁶O(e,e'α)¹²C

- E_e = 114 MeV, θ_e =15°
- Minor differences corresponding to the local maxima from $+b'_{C2}$ and $-b'_{C2}$

Differential cross section: ¹⁶O(e,e'α)¹²C

Previous experiments and proposals

- G. De Meyer et al., Phys. Lett. B 513 (2001): α -knockout experiment at NIKHEF; 3 μ A e⁻ beam at 639 MeV and 615 MeV; E_{α}: from 20 to 35 MeV; target: CO₂ at 1.6 bar and 300 K \rightarrow 1.46·10³⁴ (cm⁻²s⁻¹)
- E. Tsentalovich et al., (2000), MIT-Bates PAC proposal 00-01: 100 mA e⁻ beam at 400 MeV in a storage ring, cluster jet target 2·10¹⁶ at/cm² → 10³⁴ (cm⁻²s⁻¹); Blast detector for the scattered e⁻ and silicon detectors for α
- T. W. Donnelly, "Electron scattering and the nuclear many-body problem", in The Nuclear Many-Body Problem 2001, edited by W. Nazarewicz and D. Vretenar (Springer Netherlands, Dordrecht, 2002) pp. 19
- S. Lunkenheimer, "Studies of the nucleosynthesis ¹²C(α,γ)¹⁶O in inverse kinematics for the MAGIX experiment at MESA", (2017), 650. WE-Heraeus-Seminar.

Schematic layout of the proposed experiment

Parameters for the rate calculation

Oxygen Target	Thickness	$5 \times 10^{18} \text{ atoms/cm}^2$
	Density	$6.65 \times 10^{-4} \text{ g/cm}^3$
Electron Beam	Current	40 mA
	Energies	78, 114, 150 ${\rm MeV}$
Electron arm	In-plane acceptance	$\pm 2.08^{\circ}$
	Out-of-plane acceptance	$\pm 4.16^{\circ}$
	Solid angle acceptance	$10.5 \mathrm{\ msr}$
α -particle arm	In-plane acceptance	60°
	Out-of-plane acceptance	360°
	Solid angle acceptance	$3.14 \mathrm{\ sr}$
Luminosity		$1.25 \times 10^{36} \text{ cm}^{-2} \text{s}^{-1}$
Integrated Luminosity (100 days)		$1.08 \times 10^7 \text{ pb}^{-1}$
Central electron scattering angles		$15^{\circ}, 25^{\circ}, 35^{\circ}$
E^{cm}_{α} -range of interest		$0.7 \le E_{\alpha}^{cm} \le 1.7 \text{ MeV}$

Number of events after 100 days

• Events were sorted in: 800 Of Events 000 000 \rightarrow four 1.91 MeV wide q-bins \rightarrow ten 100 keV wide E_{α}^{cm} -bins Number 60 500 500 \rightarrow six 10° wide θ_{α}^{cm} -bins • $E_{\rho} = 114 \text{ MeV}, \theta_{\rho} = 15^{\circ},$ 0 20 Case A and Case B 10 100 000 Now we can compute Of Events 80000 statistical uncertainties 60000 Horizontal placement of data points according to:

G. D. Lafferty and T. R. Wyatt, Nucl. Instrum. Methods Phys. Res. A 355, 541 (1995).

Differential cross section after 100 days

• E_e = 114 MeV, θ_e =15°, Case A and Case B

Differential cross section after 100 days

• E_e = 114 MeV, θ_e =15°, Case A and Case B

S-factors with projected statistical uncertainties

- E_e = 114 MeV, θ_e =15°, Case A and Case B
- Three fitting parameters a'_{E1} , a'_{E2} and a'_{C0} -> S_{E1} , S_{E2} and S_{aC0} non-astrophysical factor

S-factors with projected statistical uncertainties

• $E_e = 114$ MeV, $\theta_e = 15^\circ$, Case A

S-factors with projected statistical uncertainties

- E_e = 114 MeV, θ_e =15°, Case A
- Compared to most accurate measurements, statistical uncertainties of S_{E1} and S_{E2} are improved at least by factors 5.6 and 23.9, respectively

Outlook

• Shorter run at higher E_{α}^{cm} to test the particle identification and all assumptions

- Only R_T and R_I contribute to the rate
- Rosenbluth separation of R_T and R_I to extract the S-factors and the phases separately

- $\sigma_{\text{Right}} + \sigma_{\text{Left}} \rightarrow 2(R_{\text{T}} + R_{\text{L}})$
- Form an asymmetry

- $\sigma_{Up} = \sigma_{Down}$
- \rightarrow test of efficiency and systematics

Conclusion

- Using a simple model, possibilities of new ERL accelerators and the gas-jet target, we studied the rate of ${}^{16}O(e,e'\alpha){}^{12}C$ reaction in range 0.7 < E_{α}^{cm} < 1.7 MeV and showed how to determine ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate with unprecedented statistical precision
- At $E_e = 114$ MeV and electron spectrometer with 10% E'_e acceptance the full range 0. < E^{cm}_{α} < 10.2 MeV is accessible
- For more details: I. Friščić, W. T. Donnelly and R. G. Milner, Phys. Rev. C 100, (2019) 025804; or arXiv:1904.05819

Work supported by the DOE Office of Nuclear Physics under grant No. DE-FG02-94ER40818.

Backup

The cross section formulas

A. S. Raskin and T. W. Donnelly, Ann. of Phys. 191 (1989)

$$\frac{d\sigma}{dE'_e d\Omega_e d\Omega_\alpha^{cm}} = \frac{M_\alpha M_{12C}}{8\pi^3 W} \frac{p_\alpha^{cm}}{(\hbar c)^3} \sigma_{Mott} (\tilde{v}_L R_L + \tilde{v}_T R_T + \tilde{v}_{LT} R_{LT} + \tilde{v}_{TT} R_{TT})$$
$$W = \sqrt{(M_{160} + \omega)^2 - q^2} \qquad E_\alpha^{cm} = W - W_{th}$$

$$\frac{d\sigma}{d\Omega_{\alpha}^{cm}}\bigg|_{(\gamma,\alpha)} = \frac{M_{\alpha}M_{12C}}{4\pi W} \frac{p_{\alpha}^{cm}}{\hbar c} \frac{\alpha}{E_{\gamma}} R_{T}$$
$$W = \sqrt{M_{160}(M_{160} + 2E_{\gamma})}$$
$$E_{\alpha}^{cm} = E_{\gamma} - 7.162 \text{ MeV}$$

$$\frac{d\sigma}{d\Omega_{\gamma}^{cm}}\bigg|_{(\alpha,\gamma)} = \frac{M_{\alpha}M_{12C}}{2\pi W} \frac{p_{\alpha}^{cm}}{\hbar c} \frac{\alpha}{E_{\gamma}} R_{T}$$
$$W = \sqrt{M_{\alpha}^{2} + M_{12C}^{2} + 2M_{12C}E_{\alpha}^{lab}}$$
$$E_{\alpha}^{cm} = \frac{M_{12C}}{M_{12C} + M_{\alpha}} E_{\alpha}^{lab}$$

Differential Cross Section: ¹⁶O(e,e'α)¹²C

A. S. Raskin and T. W. Donnelly, Ann. of Phys. 191 (1989)

$$\begin{aligned} \frac{d\sigma}{dE'_e d\Omega_e d\Omega^{cm}_{\alpha}} &= \frac{M_{\alpha} M_{12C}}{8\pi^3 W} \frac{p^{cm}_{\alpha}}{(\hbar c)^3} \sigma_{Mott} (\tilde{v}_L R_L + \tilde{v}_T R_T + \tilde{v}_{LT} R_{LT} + \tilde{v}_{TT} R_{TT}) \\ \rho &\equiv |Q^2/q^2| = 1 - (\omega/q)^2 & v_L = \rho^2 & \tilde{v}_L = (W/M_{16O})^2 v_L \\ \sigma_T &= \frac{1}{2}\rho + \tan^2 \theta_e/2 & \tilde{v}_T = v_T \\ W &= \sqrt{(M_{16O} + \omega)^2 - q^2} & v_{TL} = -\frac{1}{\sqrt{2}}\rho \sqrt{\rho + \tan^2 \theta_e/2} & \tilde{v}_{TL} = (W/M_{16O})v_T \\ E^{cm}_{\alpha} &= W - W_{th} & v_{TT} = -\frac{1}{2}\rho & \tilde{v}_{TT} = v_{TT} \end{aligned}$$