# High Current Performance of Alkali Antimonide Photocathode in LEReC DC gun

Mengjia Gaowei on behalf of the Electron source and the LEReC group Brookhaven National Laboratory





ERL 19 Sep. 15<sup>th</sup>-21<sup>th</sup>, 2019, Berlin, Germany

# Low Energy RHIC electron Cooling (LEReC)



#### LEReC photocathode: Production and Transportation







#### **LEReC** Photocathode Deposition

**Base pressure 6x10**<sup>-11</sup> torr

3 pairs of getter sources for each alkali species.

Produces 10~12 cathodes for each installation

#### **QE** mapping system



Bldg 535B, Instrumentation Division, BNL



### **LEReC** Photocathode Characterization

#### **QE vs Temperature**



- Sequential growth with 10 nm of Sb, followed by K and Cs deposition.
- Both K and Cs step are monitored with green light QE
- Each deposition takes ~ 2 hrs
- Each deposition cycle takes ~ 12 hrs(2 cathode/day)

#### **QE** uniformity



- Off-center design for the LEReC run 18~19
- Cathode is 6 mm in diameter
- Cathode QE was mapped after the deposition, with X-Y stepper motors controlling a green laser.





### Summary of 2018-2019 cathode production



|                       | Run<br>2018 | Run 2019<br>(to May) |        |
|-----------------------|-------------|----------------------|--------|
| # of cathodes         | 28          | 38                   | 10     |
| AVG Deposition QE (%) | 5.41        | 6.28                 | 10.87% |
| SDEV of QE (%)        | 0.97        | 0.85                 | 0.12   |

# 28 cathodes total in 2018 38 cathodes total in 2019





#### New Features in the next deposition system

Tunable cathode mask for different cathode size and position

Increased capacity of heating station to increase the production rate

**Cooling capacity at the sample stage** 

**Designed extra ports for recipe upgrade** 

### Summary of cathode transportation



LEReC cathode transporter (Ferris Wheel)

Base pressure 7x10<sup>-11</sup> torr in the transfer system

3 systems in standby, each stores 12 pucks

Cathode QE can be measured 1 at a time

Travels 1.3 mi in vehicle to RIHC tunnel







## Summary of cathode storage

| Cathode production | Lifetime   | # of cathodes |
|--------------------|------------|---------------|
| Feb, 2018          | > 2 months | 3 cathodes    |
| May, 2018          | 20 days    | 8 cathodes    |
| Jul, 2018          | No decay   | 9 cathodes    |
| Aug, 2018          | No decay   | 8 cathodes    |
| Dec, 2018          | No decay   | 8 cathodes    |
| Feb, 2019          | No decay   | 9 cathodes    |
| Mar, 2019          | No decay   | 8 cathodes    |
| May, 2019          | No decay   | 9 cathodes    |
| Jun, 2019          | No decay   | 4 cathodes    |



- ~5% QE decay during loadlock bakeout
- No QE decay in the transporter during transportation and storage



### Cathode lifetime in the gun: 2018

#### 30 mA beam current, t = 87 h, QE > 4%



#### QE decay accompanied with gun trip





25 mA beam current, t = 142 h, QE > 4%

## Gun trip in high current operation status



**QE** map





- Cathode material is least in the center of these spots and most on the rim.
- The crystalized cathode streak on the rim shows high QE











#### **Possible particles on the puck**



- We observed the crystalized cathode material around the trip point and cause the QE increase.
- We saw AI-O particles on the cathode and confirmed the Alumina particles come from polishing.





# Gun trip in high current operation status

Changed the cathode design from 11 mm in diameter in the center to 6mm in diameter and off- centered on puck

Improved cleaning procedure of pucks

#### Improved laser stability

| date   | l, mA | time, min | laser<br>fluctuations | gun     | cathode    |
|--------|-------|-----------|-----------------------|---------|------------|
| 30-Jul | 30    | 130       | very large            | trip    | center     |
| 6-Aug  | 30    | 130       | small                 | trip    | center     |
| 8-Aug  | 30    | 110       | small                 | no trip | center     |
| 9-Aug  | 30    | 115       | large                 | trip    | center     |
| 13-Aug | 26    | 140       | large                 | no trip | center     |
| 13-Aug | 30    | 75        | large                 | trip    | center     |
| 27-Aug | 25    | 480       | large                 | no trip | center     |
| 14-Sep | 30    | 180       | feedback              | no trip | Off center |
| 14-Sep | 30    | 240       | feedback              | no trip | Off center |





### Cathode lifetime in the gun: 2019

17mA beam current, QE =5.5 %, infinite lifetime during CW operation





#### X-ray characterization for LEReC cathode

Growth controls:  $\Box T_{sub}$  $\Box$  Flux rate

Characterization: QCM XRD XRR XRR QE

Upcoming: Photoconductivity RHEED



#### Experimental setup: Operando chamber



### X-ray characterization for LEReC cathode

X-ray characterization of the LEReC alkali antimonide photocathode at NSLS 2. Determined the cathode recipe developed for the LEReC project yields the stoichiometry of  $KCs_2Sb$ , with a relatively large grain size of 14 nm.





Grain size ~ 14 nm



NATIONAL LABORATORY



#### LEReC cathode under high heat



#### Possible solution for robust cathode: large crystal







| Samples | K    | Cs   | Sb   |
|---------|------|------|------|
| 1       | 2.50 | 1.16 | 1.00 |
| 2       | 2.37 | 0.91 | 1.00 |
| 3       | 2.21 | 0.95 | 1.00 |
| 4       | 2.07 | 0.94 | 1.00 |
| 5       | 1.98 | 0.88 | 1.00 |
| mean    | 2.23 | 0.97 | 1.00 |





## Summary

- The LEREC cathode production system has demonstrated its capability of stably and repeated producing high QE and uniform bi-alkali antimonide photocathodes in a timely manner.
- The cathodes show great lifetime in high current operation. The gun trip issue is in study.
- LEReC cathode has been studied by x-ray characterization at synchrotron light source. The Results show that this bi-alkali antimonide photocathode is KCs2Sb with good crystallinity, which explains the high QE.

![](_page_18_Picture_4.jpeg)

![](_page_18_Picture_5.jpeg)

#### Ackownledgement

Z. M Altinbas, I. Ben-Zvi, C. Brutus, D. Bruno, D. Gassner, X. Gu, P. Inacker, Y. Jing, J. Jamilkowski, D. Kayran, J. Kewisch, V. Litvinenko, CJ. Liaw, M. Minty, M. Mapes, T. D Miller, J. Ma, T. Miller, G. Narayan, L. Nguyen, M. Paniccia, I. Pinayev, I. Petrushina, T. Rao, K. Shih, J. Cen, J. Skaritka, J. Smedley, L. Smart, S. Seletskiy, J. Tuozzolo, E. Wang, G. Wang, Z. Zhao

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

![](_page_19_Picture_4.jpeg)

![](_page_19_Picture_5.jpeg)

![](_page_19_Picture_6.jpeg)

#### References

- 1. D. Kayran *et al.*, "First results from Commissioning of LEReC,", in *Proc. 10th Int. Particle Accelerator Conf. (IPAC'19)*, Melbourne, Australia, May 2019
- 2. A. Fedotov, "Bunched beam electron cooling for Low Energy RHIC operation", ICFA Beam Dynamics letter, No. 65, p. 22, December 2014.
- 3. E. Wang et al., "Multi-alkali photocathodes production for LEReC DC gun", in Proc. 10th Int. Particle Accelerator Conf. (IPAC'19), Melbourne, Australia, May 2019.
- 4. S. Schubert et al., "Bi-alkali antimonide photocathode growth: An X-ray diffraction study," Journal of Applied Physics, vol. 120, no. 3, p. 035303, Jul. 2016.
- 5. J. Xie et al., "Synchrotron x-ray study of a low roughness and high efficiency K2CsSb photocathode during film growth," J. Phys. D: Appl. Phys., vol. 50, no. 20, p. 205303, Apr. 2017.
- 6. Z. Ding et al., "In-situ synchrotron x-ray characterization of K2CsSb photocathode grown by ternary co-evaporation," Journal of Applied Physics, vol. 121, no. 5, p. 055305, Feb. 2017.
- 7. M. Gaowei et al., "Synthesis and x-ray characterization of sputtered bi-alkali antimonide photocathodes," APL Materials, vol. 5, no. 11, p. 116104, Nov. 2017.
- 8. M. Gaowei, J. Sinsheimer, D. Strom, J. Xie, J. Cen, J. Walsh, E. Muller, and J. Smedley, Phys. Rev. Accel. Beams 22, 073401 Published 23 July 2019

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

# Thanks for your attention! Q&A

![](_page_21_Picture_1.jpeg)

![](_page_21_Picture_2.jpeg)