Dispersion Matching with Space Charge in MESA *TECHNISCHE* UNIVERSITÄT DARMSTADT Aamna Khan^{1*}, Oliver Boine–Frankenheim¹, Kurt Aulenbacher² Technische Universität Darmstadt, Germany¹ Johannes Gutenberg–Universität Mainz, Germany²

Motivation

For intense electron bunches traversing through recirculation arcs with bends Beam centroid off-set distorts the transverse phase space without space charge (SC). Dispersion with SC defocuses the beam and increases momentum spread. **Present study focuses on**

180° low energy (5 MeV) injection arc of multi-turn Mainz Energy-recovering Superconducting Accelerator (MESA). MESA should deliver a CW beam at 105 MeV for electron scattering physics experiments with a pseudo-internal target in Energy Recovery (ER) mode. Simulations are done with beam matrix approach and particle tracking.

Simulation Results

MESA Layout

Dispersion with Space Charge

Fig. 1: Evolution of horizontal beam envelope along MARC0 at different currents.

MARC0 at different currents. Space charge modified

dispersion makes the lattice non-achromatic.

Fig. 2: Evolution of vertical beam envelopes along the MARC0 at different currents.

Fig. 4: Evolution of vertical dispersion D_{v} along the MESA beamline with space charge at different currents.

Mismatch of the horizontal and vertical beta $\Delta D_{x}(m)$ $\frac{\Delta\beta_x}{\beta_x} (\%)$ $\frac{\Delta\beta_y}{\beta_v} (\%)$ I (mA) functions, and the horizontal dispersion from the design values at the end of MARC0 with 2.6 0.037 space charge. "Random walk" optimization is used to get the 17.3 -0.017 matched solution with space charge. 41.0 -0.046 A new set of quadrupole strengths is obtained 0 0 with corrections of up to 15% in the original quadrupoles to get the matched solution. (b) (c) - 0.8 - 0.6 -0.4 -0.2 0.0 t (ps)

Fig. 5: Longitudinal phase spaces at (a) the start of MARCO, (b) the end of MARCO for I = 1 mA of current, and (c) at the end of MARC0 for I = 10 mA. The red ellipses indicate the rms beam ellipse from beam matrix tracking. MARC0 works as a bunch compressor even at 10 mA when lattice is matched with space charge.

Conclusion and Outlook

Conclusion:

Future Plans:

MESA Injection Arc

Purpose of injection arc

- Dual-purpose, Energy Recovery (ER) and External Beam (EB) mode possible.
- Controllable R_{56} for bunch compression during ER injection.
- Optics matching to get fixed beam parameters after first cryomodule.

Design feasibility	Parameters [unit]	Value
✓	E _k [MeV]	5
✓	I [mA]	1/10
✓	Initial $\beta_{x,y}$ [m]	1.30, 0.90
✓	Initial z _m [ps]	4.2
✓	$\epsilon_{nx,ny}[\pi \text{ mm-mrad}]$	2/6
	Design feasibility	Design feasibilityParameters [unit] \checkmark E_k [MeV] \checkmark I [mA] \checkmark Initial $\beta_{x,y}$ [m] \checkmark Initial z_m [ps] \checkmark $\epsilon_{nx,ny}[\pi mm-mrad]$

- Matching of both beam centroid dispersion and individual particle dispersion is important for an efficient ERL operation. Transverse-longitudinal coupling studies are necessary to understand the details and to improve the efficiency of energy recovery. Phase space degrades with SC at higher currents for small momentum deviation.
 - Study of wakefields along with space charge in the RF structures.
 - Study of space-charge-induced microbunching instability in MESA using beam matrix approach. Validation of our space charge -
 - models and ELEGANT particle tracking with particle-in-cell codes.

Acknowledgment

We are grateful for the financial support provided by DFG through GRK 2128 Accelence project D-3 to study effect of space charge and wake fields in MESA.

* khan@temf.tu-darmstadt.de