Keyword: ECR
Paper Title Other Keywords Page
MOA03 Status Report on GANIL and Upgrade of SPIRAL1 cyclotron, target, experiment, ion-source 9
 
  • O. Kamalou, P. Delahaye, M. Dubois, A. Savalle
    GANIL, Caen, France
 
  The GANIL facility (Grand Accélérateur National d’Ions Lourds) at Caen is dedicated for acceleration of heavy ion beams for nuclear physics, atomic physics, and radiobiology and material irradiation. Nowadays, an intense exotic beam is produced by the Isotope Separation On-Line method at the SPIRAL1 facility since 2001. New demands from the physics community motivated the upgrade of this facility in order to extend the range of post-accelerated radioactive ions. A 2 MEuro project allowed the profound modification of the facility and the commissioning was achieved in 2017. The status of this facility and the last results will be presented. The review of the cyclotron operation from 2001 to 2019 will be presented as well.  
slides icon Slides MOA03 [8.175 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOA03  
About • paper received ※ 10 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOB01 Recent Progress in RIKEN RI Beam Factory cyclotron, cavity, acceleration, ion-source 12
 
  • O. Kamigaito, T. Dantsuka, M. Fujimaki, N. Fukunishi, H. Hasebe, Y. Higurashi, E. Ikezawa, H. Imao, M. Kidera, M. Komiyama, K. Kumagai, T. Maie, T. Nagatomo, T. Nakagawa, M. Nakamura, T. Nishi, J. Ohnishi, H. Okuno, K. Ozeki, N. Sakamoto, K. Suda, A. Uchiyama, T. Watanabe, Y. Watanabe, K. Yamada
    RIKEN Nishina Center, Wako, Japan
  • Y.M. Miyake
    RIKEN, Saitama, Japan
 
  Recent efforts at the RIKEN RI Beam Factory (RIBF) are aimed at increasing the beam intensity for very heavy ions such as xenon and uranium. This paper presents upgrade programs carried out over the past few years, including modifications of the RF cavities of the RIKEN Ring Cyclotron and improvements of the charge stripper. The current performance of the RIBF accelerators and future plans to further increase the beam intensity are also presented.  
slides icon Slides MOB01 [13.848 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOB01  
About • paper received ※ 13 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP017 Research on Metallic Ion Beam Production With Electron Cyclotron Resonance Ion Sources experiment, ion-source, plasma, cyclotron 62
 
  • S.L. Bogomolov, A.A. Efremov, K.I. Kuzmenkov, D.K. Pugachev, Yu. Yazvitsky
    JINR, Dubna, Moscow Region, Russia
  • J.L. Conradie, D.T. Fourie, N.Y. Kheswa, J. Mira, F. Nemulodi, R.W. Thomae
    iThemba LABS, Somerset West, South Africa
 
  Many experiments in nuclear physics request the production of metallic ion beams. All elements from lithium up to uranium are of interest and most of them are required as a specific isotope which demands commonly enriched materials. Depending on the material properties beams of rare isotopes can be produced from solid materials or solid compounds. In this report the results of experiments carried out under a collaboration of JINR and iThemba LABS on the production of metallic ions from Electron Cyclotron Resonance Ion Sources (ECRIS) using resistive oven evaporation, Metal Ions from VOlatile Compounds (MIVOC) method and sputtering technique will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP017  
About • paper received ※ 11 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP018 Simulation of the Axial Injection Beam Line of DC140 Cyclotron of FLNR JINR cyclotron, injection, simulation, radiation 66
 
  • N.Yu. Kazarinov, J. Franko, G.G. Gulbekyan, I.A. Ivanenko, I.V. Kalagin
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research carries out the works under creating FLNR JINR Irradiation Facility based on the cyclotron DC140. The facility is intended for SEE testing of microchip, for production of track membranes and for solving of applied physics problems. The main systems of DC140 are based on the DC72 cyclotron ones that now are under reconstruction. The DC140 cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 5.5 up to two fixed energies 2.136 and 4.8 MeV per unit mass. The intensity of the accelerated ions will be about 1 pµAmps for light ions (A<86) and about 0.1 pµAmps for heavier ions (A>132). The injection into cyclotron will be realized from the external room temperature 18 GHz ECR ion source. The simulation of the axial injection system of the cyclotron is presented in this report.  
poster icon Poster MOP018 [1.331 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP018  
About • paper received ※ 29 August 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP019 The Results of Magnetic Field Formation and Commissioning of Heavy-Ion Isochronous Cyclotron DC280 cyclotron, operation, experiment, MMI 70
 
  • I.A. Ivanenko, G.G. Gulbekyan, G.N. Ivanov, I.V. Kalagin, V.A. Semin
    JINR, Dubna, Moscow Region, Russia
 
  The DC280 cyclotron is the new accelerator of FLNR Super Heavy Elements Factory. It was commissioned in the beginning of 2019. DC280 is intended for production of high intensity, up to 10 pmkA, beams of heavy ions with mass to charge ratio A/Z= 4 - 7. The wide range of accelerated ions from helium to uranium and smooth variation of extracted beam energy in the range W= 4 - 8 MeV/n are provided by varying of level of main magnetic field from 0.64 T till 1.32 T. The DC280 magnetic field was formed in a good conformity with results of computer modeling. In spite of commissioning of cyclotron still is in progress, the first experiments gave the intensity 1.35 pmkA of 84Kr14+ and 10 pmkA of 12C2+. At the present work the results of calculations, magnetic field measurements and first experiments are presented.  
poster icon Poster MOP019 [1.368 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP019  
About • paper received ※ 12 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOC02 A Pathway to Accelerate Ion Beams up to 3 GeV with a K140 Cyclotron cyclotron, ECRIS, ion-source, plasma 119
 
  • D.Z. Xie, L. Phair, D.S. Todd
    LBNL, Berkeley, California, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-05CH11231
The capabilities of the K140 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL) have been extensively enhanced through generations of electron cyclotron resonance ion sources (ECRISs). The cyclotron has evolved from a light-ion accelerator into a proton to uranium accelerator and has accelerated ultra-high charge state heavy ions, such as xenon and uranium. Recently, with 124Xe49+ ions injected from VENUS (a 3rd generation ECR ion source) the 88-Inch Cyclotron reached a new record of ~ 2.6 GeV.* This is an energy increase of about fifteen-fold over what this K140 cyclotron could achieve when it started operation almost six decades ago. A 4th generation ECR ion source, MARS-D, is under development and will further raise the output energy of the cyclotron. With the higher ion charge states produced that are anticipated with a new ECR ion source, the 88-Inch Cyclotron ought to be able to accelerate ion beams of energies of 3 GeV and higher for the radiation effects testing community. This paper will present and discuss the development of the MARS-D ECR ion source and the 88-Inch Cyclotron’s recent and possible future achievements.
*: D. Z. Xie, W. Lu, J. Y. Benitez, M. J. Regis, Recent Production of Ultra-High Charge State Ion Beams with VENUS, Proc. of the 23rd Int’l Workshop on ECR Ion Sources, Catania, Italy, Sept, 2018.
 
slides icon Slides MOC02 [11.895 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOC02  
About • paper received ※ 16 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP028 Bremsstrahlung Photons Emission in 28-GHz Electron Cyclotron Resonance Plasma photon, ion-source, detector, electron 219
 
  • M.J. Kumwenda, I.J. Lugendo
    Korea University, Seoul, Republic of Korea
  • J.-K. Ahn, J.W. Lee
    Pusan National University, Pusan, Republic of Korea
  • S.J. Kim, J.Y. Park, M. Won
    Korea Basic Science Institute, Busan, Republic of Korea
 
  Radial measurements of bremsstrahlung photons show high-energy intensity beyond a critical energy from electron cyclotron resonance (ECR) heating and its nature is not well understood so far. For the first time we have measured the bremsstrahlung photons energy intensity from 28-GHz ECR ion source at Busan Center of KBSI. Three round type NaI(Tl) detectors were used to measure the bremsstrahlung photons emitted at the center of the ECRIS at the same timeThe ECR ion source was operated at Radiofrequency (RF) power of 1 kW to extract 16O beam with a dominant fraction of O3+.We studied possible systematic uncertainties from different characteristics among the three NaI(Tl) detectors by repeating measurements alternatively. Geant4 simulation was performed to take the geometrical acceptance and energy-dependent detection efficiency into account due to large non-uniformity in the material budget. We extracted true bremsstrahlung energy spectra from the 28-GHz ECR ion source using the inverse-matrix unfolding method. The high energy intensities of the bremsstrahlung photons at the center of the ECRIS were explained by the internal structure and shape of ECR plasma.  
poster icon Poster TUP028 [1.240 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP028  
About • paper received ※ 13 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC01 SHE Factory: Cyclotron Facility for Super Heavy Elements Research cyclotron, experiment, factory, acceleration 305
 
  • I.V. Kalagin, S.L. Bogomolov, S.N. Dmitriev, B. Gikal, G.G. Gulbekyan, I.A. Ivanenko, G.N. Ivanov, N.Yu. Kazarinov, M.V. Khabarov, Y.T. Oganessian, N.F. Osipov, S.V. Pashchenko, V.A. Semin
    JINR, Dubna, Moscow Region, Russia
  • V.K. Utyonkov, A.V. Yeremin
    JINR/FLNR, Moscow region, Russia
 
  The synthesis of heavy and the heaviest elements and the study of their nuclear and chemical properties are of highest priority in the basic research programme of the Flerov Laboratory of Nuclear Reactions. The synthesis of super heavy elements (SHE) with atomic numbers 113-118 has been achieved in the 48Ca-induced reactions. The International Unions of Pure and Applied Physics (IUPAP) and Chemistry (IUPAC) recognized the priority of Dubna in the discovery of elements 114-118. The seventh period of the Periodic Table has been completed. In accordance with the development program, the first in the world SHE Factory was built at the Laboratory on the basis of the new DC280 cyclotron which was commissioned in 2019. DC-280 has to provide intensities up to 10 pmkA for ions with atomic masses over 50. The main task of the Factory is the synthesis of new chemical elements with atomic numbers 119 and higher, as well as a detailed study of the nuclear and chemical properties of previously discovered superheavy elements. The Factory are being equipped with target materials, new separators and detectors for the study of the nuclear, atomic and chemical properties of the new elements.  
slides icon Slides THC01 [15.662 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THC01  
About • paper received ※ 11 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC02 First Beams Produced by the Texas A&M University Radioactive-Beam Upgrade ECRIS, target, cyclotron, injection 310
 
  • D.P. May, J.E. Ärje, B.T. Roeder, A. Saastamoinen
    Texas A&M University Cyclotron Institute, College Station, Texas, USA
  • F.P. Abegglen, H.L. Clark, G.J. Kim, G. Tabacaru
    Texas A&M University, Cyclotron Institute, College Station, Texas, USA
 
  Funding: United States Department of Energy, Grant DE-FG02-93ER40773
The first test beams of radioactive ions produced by the ion-guide-on-line (IGOL) system coupled to the charge-breeding electron-cyclotron-resonance ion source (CB-ECRIS) have been accelerated to high energy by the Texas A&M K500 cyclotron. The radioactive ions were first produced by energetic protons, provided by the K150 cyclotron, impinging on foil targets. Low charge-state ions were then swept by a flow of helium gas into an rf-only sextupole ion guide (SPIG) which transports them into the plasma of the CB-ECRIS. The K500 cyclotron and beam-line transport were tuned with analog beam before tuning the radioactive beam.
 
slides icon Slides THC02 [2.782 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THC02  
About • paper received ※ 13 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD01 Physics and Technology of Compact Plasma Traps plasma, diagnostics, ion-source, electron 321
 
  • D. Mascali, G. Castro, L. Celona, S. Gammino, O. Leonardi, M. Mazzaglia, E. Naselli, G. Torrisi
    INFN/LNS, Catania, Italy
  • E. Naselli
    Catania University, Catania, Italy
 
  ECR Ion Sources are deemed to be among the most performing ion sources feeding particle accelerators, cyclotrons in particular. Improvements of their performances strictly depend on the knowledge of plasma physics in compact magnetic traps. The paper will comment on the results obtained by the INFN-LNS team and international collaborators by means of a multi-diagnostics setup able to monitor the evolution in space and time of several plasma parameters, simultaneously with beam extraction and analysis in the LEBT, in single vs. double frequency operations, including the RF power and magnetic field scalings, and exploring regimes dominated by plasma turbulence. The results are relevant for the operations of existing ion sources and for the design of new ones. Compact magnetic traps fashioned in a similar way of ECRISs can be considered as an experimental environment by itself: we are exploring this opportunity relying to the in-plasma measurements of radionuclides lifetimes (in particular, beta-decaying elements): CosmoChronometers or nuclei involved in the s-process nucleosynthesis are among the case studies, opening new perspectives in the nuclear astrophysics field.  
slides icon Slides THD01 [17.662 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THD01  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD02 Central Region Upgrade for the Jyväskylä K130 Cyclotron injection, cyclotron, ECRIS, emittance 326
 
  • T. Kalvas, P.M.T. Heikkinen, H.A. Koivisto
    JYFL, Jyväskylä, Finland
  • E. Forton, W.J.G.M. Kleeven, J. Mandrillon, V. Nuttens
    IBA, Louvain-la-Neuve, Belgium
 
  The Jyväskylä K130 cyclotron has been in operation for more than 25 years providing beams from H to Au with energies ranging from 1 to 80 MeV/u for nuclear physics research and applications. At the typical energies around 5 MeV/u used for the nuclear physics program the injection voltage used is about 10 kV. The low voltage limits the beam intensity especially from the 18 GHz ECRIS HIISI. To increase the beam intensities the central region of the K130 cyclotron is being upgraded by increasing the injection voltage by a factor of 2. The new central region with spiral inflectors for harmonics 1-3 has been designed. The new central region shows better transmission in simulations than the original one for all harmonics and especially for h=2 typically used for nuclear physics. The engineering design for the new central region is being done.  
slides icon Slides THD02 [12.967 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THD02  
About • paper received ※ 15 September 2019       paper accepted ※ 27 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)