Keyword: betatron
Paper Title Other Keywords Page
MOP020 Simulation of the Beam Extraction System of DC140 Cyclotron of FLNR JINR cyclotron, extraction, simulation, radiation 73
 
  • N.Yu. Kazarinov, G.G. Gulbekyan, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
 
  Flerov Laboratory of Nuclear Reaction of Joint Institute for Nuclear Research carries out the works under creating FLNR JINR Irradiation Facility based on the cyclotron DC140. The facility is intended for SEE testing of microchip, for production of track membranes and for solving of applied physics problems. The main systems of DC140 are based on the DC72 cyclotron ones that now are under reconstruction. The DC140 cyclotron is intended for acceleration of heavy ions with mass-to-charge ratio A/Z within interval from 5 to 5.5 up to two fixed energies 2.136 and 4.8 MeV per unit mass. The intensity of the accelerated ions will be about 1 pµAmps for light ions (A<86) and about 0.1 pµAmps for heavier ions (A>132). The beam extraction system consists of electrostatic deflector and two magnetic channels. The simulation of the extraction system of the cyclotron is presented in this report. The extracted beams characteristics outside the cyclotron, that will serve as initial conditions for the design of experimental beam lines of FLNR JINR IF are determined.  
poster icon Poster MOP020 [9.336 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP020  
About • paper received ※ 29 August 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP021 Simulation of Beam Extraction from TR24 Cyclotron at IPHC extraction, cyclotron, emittance, experiment 76
 
  • N.Yu. Kazarinov, I.A. Ivanenko
    JINR, Dubna, Moscow Region, Russia
  • T. Adam, F.R. Osswald, E.K. Traykov
    IPHC, Strasbourg Cedex 2, France
 
  The CYRCé (CYclotron pour la ReCherche et Enseignement) TR24 cyclotron is used at IPHC (Institut Pluridisciplinaire Hubert Curien) for the production of radio-isotopes for diagnostics, medical treatments and fundamental research in radiobiology. The TR24 cyclotron produced and commercialized by ACSI delivers a 16-25 MeV proton beam with intensity from few nA up to 500 µA. The TR24 is a compact isochronous cyclotron with normal-conducting magnet and stripper foil for the beam extraction. The calculation model for OPERA 3D program code is described. The magnetic field map in the working region of the cyclotron is generated. The beam characteristics outside the cyclotron, that will serve as initial conditions for the design of future beam lines are determined.  
poster icon Poster MOP021 [15.509 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOP021  
About • paper received ※ 29 August 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP034 Study of MERIT Ring for Intense Secondary Particle Production target, acceleration, experiment, proton 237
 
  • H. Okita, Y. Ishi, Y. Kuriyama, Y. Mori, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  Funding: This work is partially supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan).
An intense negative muon source MERIT (Multiplex Energy Recovery Internal Target) for the nuclear transformation to mitigate the long-lived fission products from nuclear plants have been proposed. For the purpose of proof-of principle of the MERIT scheme, a FFA (Fixed Field Alternating focusing) ring has been developed and beam experiments have been carried out. In this conference, the results of this study will be reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP034  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)