04 Operation and Upgrades
Paper Title Page
MOA01 Recent Experimental Results of the Accelerator Driven System with a Sub-Critical Nuclear Reactor (ADS) Program 1
 
  • Y. Ishi, Y. Fuwa, Y. Kuriyama, Y. Mori, H. Okita, K. Suga, T. Uesugi
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Fuwa
    JAEA/J-PARC, Tokai-mura, Japan
 
  A series of study on the accelerator driven system (ADS) has been carried out since 2009 at KURNS*. In these studies, Kyoto University Critical Assembly (KUCA) has been used as sub-critical system connected with the proton beam line from FFAG accelerator facility. A profile of accelerator facility and experimental results, including the first evidence of the transmutation of minor actinides at ADS, will be presented.
* stands for Institute for Integrated Radiation and Nuclear Science, Kyoto University.
 
slides icon Slides MOA01 [18.120 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOA01  
About • paper received ※ 15 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA02 Operation Status and Upgrading of Cyclotron in Lanzhou 5
 
  • W.Q. Yang, L.J. Mao, L.T. Sun, J.W. Xia, J.C. Yang
    IMP/CAS, Lanzhou, People’s Republic of China
 
  IMP operates the Heavy Ion Research Facility in Lan-zhou (HIRFL), which consists of the Sector Focusing Cyclotron, the Separated Sector Cyclotron, the Cooler Storage Ring, and a number of experimental terminals. The HIRFL is mainly used in fundamental research of nuclear physics, atomic physics, irradiation material and biology, and accelerator technology. This paper mainly introduces the operation status and upgrading of HIRFL. So far, HIRFL achieves all-ion acceleration from proton to uranium. In addition, in order to improve the efficiency of HIRFL, we will build two new Linac injectors for SSC and CSR, respectively.  
slides icon Slides MOA02 [14.507 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOA02  
About • paper received ※ 14 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA03 Status Report on GANIL and Upgrade of SPIRAL1 9
 
  • O. Kamalou, P. Delahaye, M. Dubois, A. Savalle
    GANIL, Caen, France
 
  The GANIL facility (Grand Accélérateur National d’Ions Lourds) at Caen is dedicated for acceleration of heavy ion beams for nuclear physics, atomic physics, and radiobiology and material irradiation. Nowadays, an intense exotic beam is produced by the Isotope Separation On-Line method at the SPIRAL1 facility since 2001. New demands from the physics community motivated the upgrade of this facility in order to extend the range of post-accelerated radioactive ions. A 2 MEuro project allowed the profound modification of the facility and the commissioning was achieved in 2017. The status of this facility and the last results will be presented. The review of the cyclotron operation from 2001 to 2019 will be presented as well.  
slides icon Slides MOA03 [8.175 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOA03  
About • paper received ※ 10 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOC02 A Pathway to Accelerate Ion Beams up to 3 GeV with a K140 Cyclotron 119
 
  • D.Z. Xie, L. Phair, D.S. Todd
    LBNL, Berkeley, California, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract number DE-AC02-05CH11231
The capabilities of the K140 88-Inch Cyclotron at Lawrence Berkeley National Laboratory (LBNL) have been extensively enhanced through generations of electron cyclotron resonance ion sources (ECRISs). The cyclotron has evolved from a light-ion accelerator into a proton to uranium accelerator and has accelerated ultra-high charge state heavy ions, such as xenon and uranium. Recently, with 124Xe49+ ions injected from VENUS (a 3rd generation ECR ion source) the 88-Inch Cyclotron reached a new record of ~ 2.6 GeV.* This is an energy increase of about fifteen-fold over what this K140 cyclotron could achieve when it started operation almost six decades ago. A 4th generation ECR ion source, MARS-D, is under development and will further raise the output energy of the cyclotron. With the higher ion charge states produced that are anticipated with a new ECR ion source, the 88-Inch Cyclotron ought to be able to accelerate ion beams of energies of 3 GeV and higher for the radiation effects testing community. This paper will present and discuss the development of the MARS-D ECR ion source and the 88-Inch Cyclotron’s recent and possible future achievements.
*: D. Z. Xie, W. Lu, J. Y. Benitez, M. J. Regis, Recent Production of Ultra-High Charge State Ion Beams with VENUS, Proc. of the 23rd Int’l Workshop on ECR Ion Sources, Catania, Italy, Sept, 2018.
 
slides icon Slides MOC02 [11.895 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOC02  
About • paper received ※ 16 September 2019       paper accepted ※ 24 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOC03 Upgrade of the PSI Injector 2 Cyclotron 123
 
  • M. Schneider, J. Grillenberger
    PSI, Villigen PSI, Switzerland
 
  The high intensity proton accelerator facility at PSI is capable of providing beam currents of up to 2.4 mA at a kinetic energy of 590 MeV. PSI is following an upgrade plan to further increase the beam power and to further minimize proton losses. Up to now, this has mainly been achieved by the installation of high gradient copper resonators in the Ring cyclotron and the installation of more powerful RF-amplifiers. Currently, PSI follows a similar approach for the Injector 2 cyclotron providing 72 MeV protons for the injection into the 590 MeV Ring cyclotron. In order to increase the turn separation in the injector cyclotron which results in lower relative beam losses, the two 150 MHz resonators operated in accelerating mode are replaced with two 50 MHz Aluminum resonators providing higher acceleration voltage. This paper describes the status of the upgrade, i.e., the replacement of the first resonator and related hardware.  
slides icon Slides MOC03 [10.052 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOC03  
About • paper received ※ 13 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP005 Three Years Operation of CYCIAE-100 156
 
  • T. Ge, L.C. Cao, Z.H. Fu, S.G. Hou, B. Ji, H. Jiang, S.Q. Li, Y.Q. Li, Z.W. Liu, Y.L. Lv, G.F. Pan, L. Wang, L.P. Wen, Z.G. Yin, T.J. Zhang
    CIAE, Beijing, People’s Republic of China
 
  The 100 MeV high intensity proton cyclotron (CYCIAE-100) developed by China Institute of Atomic Energy is a multi-purpose variable energy AVF cyclotron. Its design specifications are: energy from 75 to 100 MeV continuously adjustable, beam intensity 200uA, beam current can be extracted in both directions. CYCIAE-100 was commissioned to extract 100 MeV proton beam for the first time in July 2014. The first physics experiment was carried out in November 2016. By June 2019, the design specifications of CYCIAE-100 was commissioned and the maximum beam power was 52 kW. The beam intensity range from 1 pA to 520 µA is achieved, and the beam stability is about 1% for 8 hours. Several typical physics experiments have been carried out. Such as: The physics experiment of CYCIAE-100 driving ISOL device to generate radioactive nuclear beam, SiC and SRAM proton irradiation experiments, calibration experiment of high-energy proton electron total dose detector probe, etc. At present, the beam time for CYCIAE-100 is about 5,000 hours, providing effective beam time for more than 3,000 hours for many users at home and abroad, and the other beam time for beam development.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP005  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP006 The Injection and Chopper-Based System at Arronax C70XP Cyclotron 159
 
  • F. Poirier, F. Bulteau-harel, T. Durand, X. Goiziou, C. Koumeir, A. Sengar, H. Trichet
    Cyclotron ARRONAX, Saint-Herblain, France
  • G. Blain, M. Fattahi, F. Haddad, J. Vandenborre
    SUBATECH, Nantes, France
  • S. Chiavassa, G. Delpon
    ICO, Saint - Herblain, France
  • F. Poirier
    CNRS - DR17, RENNES, France
 
  Funding: This work has been, in part, supported by grants from the French National Agency for Research, Arronax-Plus n°ANR-11-EQPX-0004, IRON n°ANR-11-LABX-18-01 and Next n°ANR-16-IDEX-0007.
The multi-particle cyclotron of the Arronax Public Interest Group (GIP) is used to perform irradiation up to hundreds of µA on various experiments and targets. To support low and high average intensity usage and adapt the beam time structure required for high peak intensity operation and experiments such as pulsed experiments studies, it has been devised a pulsing system in the injection of the cyclotron. This system combines the use of a chopper, low frequency switch, and a control system based on the new extended EPICS network. This paper details the pulsing system adopted at Arronax, updates and results for various intensity experimental studies performed with alpha and proton beams. Updated work on the simulation of the injection is also shown, specifically towards high intensity future irradiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP006  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP007 Operational Experience in the Treatment of Ocular Melanomas with a New Digital Low-level RF Control System 162
 
  • T. Fanselow, J. Bundesmann, A. Denker, U. Hiller
    HZB, Berlin, Germany
  • J.K. Abraham, J.L. Conradie, W. Duckitt
    iThemba LABS, Somerset West, South Africa
 
  Ocular melanomas have been treated for the last 20 years at the Helmholtz-Zentrum Berlin in collaboration with the Charité Universitätsmedizin Berlin. However, parts of the initial control system electronics date back to the 1970s, when the machine was installed. Facing a critical shortage of legacy and obsolete components and with the down-time due to failures in the electronics on the increase, a decision was made to install the digital low-level RF control system, developed by iThemba LABS, on our K=132 cyclotron. A short description of the installation and commissioning process, which occurred in April 2017, and the experiences of the first 2 years of operation with the new digital low-level RF control system is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP007  
About • paper received ※ 14 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP008 The Cyclotron TR-FLEX at the Center for Radiopharmaceutical Cancer Research at Helmholtz-Zentrum Dresden-Rossendorf 166
 
  • M. Kreller, T. Knieß
    HZDR, Dresden, Germany
  • S. Preusche
    Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
 
  The new Center for Radiopharmaceutical Cancer Research was established at Helmholtz-Zentrum Dresden-Rossendorf e. V. to centralize the main units: a high current proton cyclotron, a radiopharmaceutical production – GMP unit including quality control, laboratories for PET-radiochemistry, chemical and biochemical laboratories and laboratories for small animal imaging. The cyclotron TR-Flex was put into operation in 2017 and it is equipped with two extraction ports. Both are movable to adjust the proton energy in the range from 15 MeV up to 30 MeV. One extraction port is coupled with a combination magnet and two beam lines. A [123I]I-gas target station is installed at the first beam line and a four-port target selector at beamline two and at the second extraction port. Two [18F]F-water targets, a [18F]F2-gas target, a [11C]CH4-gas target, a [11C]CO2-gas target, a 30° and a 90° solid state target are mounted on the target selectors. In our contribution we report our experience of the new cyclotron during the first two operation years. Typical beam parameters and the reliability of the TR-FLEX are presented. Furthermore we describe the new home-built Radionuclide Distribution System.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP008  
About • paper received ※ 18 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP009 Cyclotron Cavity Pollution Recovery 169
 
  • J. Dabin, B. Adant, P. Cailliau, K. Ellis, E. Forton, J. Mandrillon, T.S. Ponter, P. Verbruggen
    IBA, Louvain-la-Neuve, Belgium
 
  In a cyclotron, RF cavities are usually among the most reliable subsystems, provided minimal care and maintenance. Nevertheless, several parameters may affect cavity performance after several years of operation. To name a few typical causes of degradation are: decreasing vacuum quality, various gas loads or gas qualities triggering adverse effects, deposition of highly emissive material on the cavity due to overheating of components like pass-through connectors, accidental use of chemicals or not-suitable greases. The cavity status can be monitored but, in the worst cases, the RF tuning may become difficult and it is important to apply methods in order to recover a better cavity Q-factor. In this paper, cases of cavity pollution will be shown, their potential root causes discussed and some recovery methods described.  
poster icon Poster TUP009 [0.398 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP009  
About • paper received ※ 12 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP010 Buncher for the Optimization of the Injection of a 70 MeV Cyclotron 173
 
  • P. Antonini, A. Lombardi, M. Maggiore, L. Pranovi
    INFN/LNL, Legnaro (PD), Italy
  • L. Buriola
    Univ. degli Studi di Padova, Padova, Italy
 
  The design of an injection buncher for the 70 MeV cyclotron in use at LNL labs of INFN is under way. This buncher is to be installed between the ion source and the injection, to match the injected beam to the acceptance angle of the injection. The planned design is a 3/2 beta-λ double-gap driven with one or two harmonics of the 56 MHz RF frequency. Remotely-driven variable capacitors will be used for easy tuning of the matching box from the control system. The mechanical layout and simulations will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP010  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP011 Upgrade of the Central Region of the Superconducting Cyclotron at INFN-LNS 177
 
  • G. D’Agostino, L. Calabretta, D. Rifuggiato
    INFN/LNS, Catania, Italy
  • W.J.G.M. Kleeven
    IBA, Louvain-la-Neuve, Belgium
 
  The Superconducting Cyclotron (CS) at INFN-LNS is regularly operated with beam power up to 100 W. The present efforts in upgrading the cyclotron are directed towards an increase of beam power up to 10 kW for ions with mass number A < 40 and energies between 15 and 70 AMeV by means of increase of beam intensity. Moreover, a beam energy resolution of 0.1% is requested by the NUMEN project at INFN-LNS. We plan to achieve high beam power by increasing the efficiency of the injection and extraction processes. The current extraction efficiency is lower than 60%. We expect to increase it to a value close to 100% by extracting the specific ion beams by stripping and no longer by electrostatic deflectors. A spiral inflector is used to bent onto the median plane the ion beams produced by the two ECR ion sources. Including the effect of a drift buncher placed in the axial injection line, the current injection efficiency is about 15%. The study of an upgraded CS central region is ongoing at INFN-LNS. First results of simulation study aimed to increase the injection efficiency are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP011  
About • paper received ※ 14 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP012 Upgrade of the iThemba LABS Neutron Beam Vault to a Metrology Facility 181
 
  • N.B. Ndlovu, P.P. Maleka, F.D. Smit
    iThemba LABS, Somerset West, South Africa
  • A. Boso
    NPL, Middlesex, United Kingdom
  • A. Buffler, D. Geduld, T. Hutton, T. Leadbeater
    UCT Physics, Cape Town, South Africa
  • V. Lacoste
    IRSN, Saint-Paul-Lez-Durance, France
 
  Quasi-monoenergetic neutron beams are typically produced at the iThemba LABS fast neutron beam facility by the 7Li(p, xn) or 9Be(p, xn) reactions. With the proton beams available from the separated sector cyclotron, the neutron energy range from about 30 MeV to 200 MeV can be covered almost continuously. The facility first became operational in the late 1980s. The fast neutron beam facility at iThemba LABS has been designated by the National Metrology Institute of South Africa (NMISA) as an entity responsible for providing traceability for the medium and high-energy neutron measurements in South Africa. As a result, the facility is undergoing a major upgrade and development in order for it to meet the requirements for a medium and high-energy neutron metrology facility. As part of the ongoing upgrade, Monte Carlo (MC) simulations aimed at benchmarking the experimental data are ongoing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP012  
About • paper received ※ 14 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP014 Deflecting System Upgrade Initial Simulations for 37 MeV Cyclotron at NPI Řež 185
 
  • T. Matlocha
    NPI, Řež near Prague, Czech Republic
 
  NPI Řež U-120M multi-particle variable energy cyclotron system for positive ions extraction consists of three electrostatic deflectors, one active magnetic channel and an electromagnetic bump exciter. The deflectors transmission ratio for deuterons, alpha particles and Helium 3 ions is rather low, usually about 10%, for protons it is far below 5%. Based on an experience from other cyclotron laboratories, the general concept of the extraction system has been modified and the last two electrostatic deflectors were replaced with two magnetic channels. In the early stage of the upgrade, simulations were performed for protons at 28 MeV and Helium 3 ions at 44 MeV with and without the magnetic bump exciter. The extraction efficiency and beam losses along the extraction path are evaluated. The presented modified extraction system simulations suggest promising results. The total transmission ratio of the deflecting system has increased significantly, allowing work to continue and expect a positive final result.  
poster icon Poster TUP014 [1.241 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP014  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP016 New Centering Beam Monitor for High Power Proton Beam Rotating Target 189
 
  • P.-A. Duperrex, P. Baumann, S. Joray, D.C. Kiselev, D. Laube, D. Reggiani
    PSI, Villigen PSI, Switzerland
 
  The high intensity proton accelerator (HIPA) at the Paul Scherrer Institut (PSI) delivers 590 MeV c.w. proton beam with currents of up to 2.4 mA, i.e. 1.4 MW beam power, For experiments of nuclear and material research the beam is directed to the 4 or 6 cm graphite 1 Hz rotating target (Target E). Centring the beam on the target is an important task for the operation and has safety issues in case of beam misalignment. Transmission monitoring has been the standard method to optimize the beam position on the target, though not very sensitive. A new method is currently being tested that provides a more sensitive off-axis detection. It is based on the detection of beam inten-sity modulation from the milled grooves at the target edge. This paper presents the concept and preliminary experimental results that can be obtained with this method.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP016  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP017 Manufacturing and Commissioning of Cyclotrons in a Series Production at Varian 192
 
  • O. Boldt, M. Eichel, S. Lucht, L. Netterdon, A. Roth, M. Seher, T. Stephani, M. Wiesner
    VMS-PT, Troisdorf, Germany
 
  On 16th March 2019, Varian celebrated the 10th anniversary of first patient treatment in the Munich Proton Center, Germany. Since the first cyclotron installation, 22 more 250 MeV superconducting isochronous proton cyclotrons have successfully been manufactured, commissioned, and tested in our Troisdorf production line. During this process, an increasing experience with the cyclotron’s internal mechanisms and underlying physics allowed for a nowadays significant faster commissioning lead time without having changed the hardware setup substantially. Furthermore, we can already verify full clinical performance of each cyclotron in the factory test cells before delivery to the customer. Essential improvements in the areas of qualification of magnetic field configuration, RF conditioning, and beam commissioning are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUP017  
About • paper received ※ 15 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC01 Review and Current Status of the 70 MeV High Intensity Proton Cyclotron at Legnaro 248
 
  • M. Maggiore, P. Antonini, A. Lombardi, L. Pranovi
    INFN/LNL, Legnaro (PD), Italy
  • Z. Filipovski
    UI PET, Skopje, Republic of North Macedonia
 
  In 2017 the new cyclotron has been successfully commissioned and started the operation at Laboratori Nazionali di Legnaro (LNL) of INFN . The cyclotron is the proton driver foreseen for the Selective Production of Exotic Species (SPES) project, providing the high power beam for radioactive ion beams (RIBs) production by the ISOL technique. The SPES facility is today under construction and first low energy RIBs are expected to be available on 2021. The facility has been designed in order to exploit the versatility of the cyclotron in terms of wide range of energy and beam current extracted: 35-70 MeV energy and 20 nA - 500 µA of average current. Moreover, the possibility to extract at the same time two proton beams allows to share these both for experimental physics session and applications. In particular, at LNL a collaboration between private company and public institution will lead to a profitable synergy in R&D of new radioisotopes and the related production. In the session the results of the commissioning and the operation of cyclotron will be presented as well as the description of the SPES facility together with its potentiality in nuclear physics research and applications.  
slides icon Slides TUC01 [14.176 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUC01  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC02 Status of the HZB Cyclotron 253
 
  • A. Denker, J. Bundesmann, T. Damerow, T. Fanselow, D. Hildebrand, U. Hiller, I. Kailouh, G. Kourkafas, S. Ozierenski, C. Rethfeldt, J. Röhrich, S. Seidel, C. Zimmer
    HZB, Berlin, Germany
  • D. Cordini, J. Heufelder, R. Stark, A. Weber
    Charite, Berlin, Germany
 
  For more than 20 years eye tumours are treated in collaboration with the Charité - Universitätsmedizin Berlin. The close co-operation between Charité and HZB permits joint interdisciplinary research. Irradiations with either a sharp, well focused or a broad beam, either in vacuum or in air are possible. In addition, a 60Co-source for gamma-irradiations is available. Experiments now comprise dosimetry, detector comparisons, ambulant mouse irradiations, including class I gene-modified mice. Furthermore, radiation hardness tests on detectors, CCD-cameras and other electronics are performed. In order to improve the beam diagnosis between the 2 MV injector Tandetron and the cyclotron a harp has been installed, leading to new beam line calculations for the injection line. The accelerator operation for therapy as well as on-going experiments and results will be presented.  
slides icon Slides TUC02 [1.965 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUC02  
About • paper received ※ 14 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC03 AGOR Status Report 256
 
  • B.N. Jones, S. Brandenburg, M.-J. van Goethem
    KVI-CART, Groningen, The Netherlands
 
  Funding: Work supported by EU Horizon 2020 (contract nrs. 654002; 730983) and the Dutch Cancer Foundation KWF project 11766)
TThe operations of the superconducting cyclotron AG-OR over the past years will be reviewed. Reliability issues encountered after nearly 25 years of operation and mitigation measures to warrant reliable operation for the coming decade will be discussed. The research performed with AGOR has significantly shifted from fundamental physics to radiation biology and medical radiation physics, both in collaboration with the Groningen Proton Therapy Center, and radiation hardness studies. The radiation biology research will be substantially expanded in the coming years with a new beam line for image guided preclinical research. For this research new dose delivery modalities including scanning, spatial fractionation and very high dose rates are developed. In addition a new program has been started on the production of exotic nuclei, for which a new superconducting solenoid fragment separator will be developed. For the radiation hardness testing a cocktail beam at 30 MeV/amu with several ion species up to Xe has been developed and is now routinely delivered for experiments. A cocktail at 15 MeV/amu up to Bi is under development.
 
slides icon Slides TUC03 [4.632 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUC03  
About • paper received ※ 14 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC04 Status of the Cyclotron Facility at Research Center for Nuclear Physics 259
 
  • H. Kanda, M. Fukuda, S. Hara, T. Hara, K. Hatanaka, K. Kamakura, H.W. Koay, S. Morinobu, Y. Morita, M. Nakao, K. Omoto, T. Saito, K. Takeda, H. Tamura, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  Research Center for Nuclear Physics (RCNP), Osaka University operates a K140 AVF cyclotron and a K400 ring cyclotron and promotes the nuclear physics, accelerator physics, material science, nuclear medicine and related scientific fields. In the recent years, we operated the CAGRA campaign and Grand-RAIDEN+CAGRA campaign experiments* for taking advantage of the low background environment of the RCNP experimental halls and the high quality beams. We have successfully completed the low energy muon beam line, MuSIC**. We have been carrying out a program of the upgrade of the K140 AVF cyclotron which continued working since 1973. We aim at 10 times higher intensity for the proton beam than before and further stability of the operation. We also carried out the upgrade of the cyclotron building and related facilities to handle beams with higher intensity. From 2019, the RCNP started the Research Center of Subatomic Sciences as the International Joint Usage/Research Center in Japan. These upgrades are the most important programs to extend the function of the newly established center.
*E. Ideguchi, SSNET’17 - Abstracts and slides, (p. 1990). France, (2017).
**D. Tomono, PoS(NuFact2017) 111, (2018).
 
slides icon Slides TUC04 [8.696 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-TUC04  
About • paper received ※ 15 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA03
Design for Upgrading the RCNP AVF Cyclotron  
 
  • M. Fukuda, S. Hara, T. Hara, K. Hatanaka, K. Kamakura, H. Kanda, H.W. Koay, S. Morinobu, Y. Morita, K. Nagayama, M. Nakao, K. Omoto, T. Saito, K. Takeda, H. Tamura, D. Tomono, Y. Yasuda, T. Yorita
    RCNP, Osaka, Japan
 
  The upgrade program of the RCNP K140 AVF cyclotron was started in 2019 to provide a high-quality intense beam for nuclear physics experiments and ion beam applications such as RI production and soft-error rate testing of semiconductor devices. The beam quality and intensity will be improved by increasing an extraction voltage of ion sources from 15 to 50 kV. The axial beam injection system will be modified to meet the condition of the increased injection energy. A single Dee electrode with a span angle of 180 degrees will be replaced by two 87 degree Dee electrodes. A new RF resonator was designed to cover a frequency range from 18 to 36 MHz to accelerate staple particles using acceleration harmonic mode of h=2 which maximizes the energy gain and turn separation by the double Dee system. A sub-harmonic bunching system will be applied to an injected beam to match the particle revolution frequency with that of the K400 ring cyclotron. Two gradient correctors will be placed in the extraction region to implement double-focusing for matching the extracted beam to the MEBT system. In this paper, the detailed design of the upgraded AVF cyclotron will be discussed.  
slides icon Slides WEA03 [18.161 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THB04 Development of a Transparent Profiler Based on Secondary Electrons Emission for Charged Particle Beams 302
 
  • C. Thiebaux, Y. Geerebaert, F. Magniette, P. Manigot, M. Verderi
    LLR, Palaiseau, France
  • G. Blain, F. Haddad, N. Michel, N. Servagent, T. Sounalet
    SUBATECH, Nantes, France
  • B. Boyer, É. Delagnes, F.T. Gebreyohannes, O. Gevin
    CEA-IRFU, Gif-sur-Yvette, France
  • F. Haddad, C. Koumeir, F. Poirier
    Cyclotron ARRONAX, Saint-Herblain, France
 
  Funding: This study is supported by three programs of the Agence Nationale de la Recherche, ANR-17-CE31-0015, ANR- 11-EQPX-0004 and the LABEX P2IO.
The PEPITES project* aims at realizing an operational prototype of an ultra-thin, radiation-resistant profiler able to permanently operate on mid-energy (O(100 MeV)) charged particle accelerators. PEPITES uses secondary electron emission (SEE) for the signal because it requires only a minimal thickness of material (10 nm); very linear, it also offers a great dynamic. The lateral beam profile is sampled using segmented electrodes, constructed by thin film methods. Gold strips, as thin as the electrical conductivity allows (~ 50 nm), are deposited on an as thin as possible insulating substrate. When crossing the gold, the beam ejects the electrons by SEE, the current thus formed in each strip allows the sampling. The technique was validated at ARRONAX with 68 MeV proton beams for intensities from 100 fA to 10 nA. SEE is characterized up to 100 nA at ARRONAX and medical energies at CPO**. Electrodes were subjected to doses of up to 109 Gy without showing significant degradation. A demonstrator with dedicated electronics (CEA) will be installed at ARRONAX and used routinely. The performances of the system and its behavior over time will thus be characterized.
*LLR, ARRONAX cyclotron and CEA
**Orsay Protontherapy Center (Institut Curie)
 
slides icon Slides THB04 [16.785 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THB04  
About • paper received ※ 13 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC01 SHE Factory: Cyclotron Facility for Super Heavy Elements Research 305
 
  • I.V. Kalagin, S.L. Bogomolov, S.N. Dmitriev, B. Gikal, G.G. Gulbekyan, I.A. Ivanenko, G.N. Ivanov, N.Yu. Kazarinov, M.V. Khabarov, Y.T. Oganessian, N.F. Osipov, S.V. Pashchenko, V.A. Semin
    JINR, Dubna, Moscow Region, Russia
  • V.K. Utyonkov, A.V. Yeremin
    JINR/FLNR, Moscow region, Russia
 
  The synthesis of heavy and the heaviest elements and the study of their nuclear and chemical properties are of highest priority in the basic research programme of the Flerov Laboratory of Nuclear Reactions. The synthesis of super heavy elements (SHE) with atomic numbers 113-118 has been achieved in the 48Ca-induced reactions. The International Unions of Pure and Applied Physics (IUPAP) and Chemistry (IUPAC) recognized the priority of Dubna in the discovery of elements 114-118. The seventh period of the Periodic Table has been completed. In accordance with the development program, the first in the world SHE Factory was built at the Laboratory on the basis of the new DC280 cyclotron which was commissioned in 2019. DC-280 has to provide intensities up to 10 pmkA for ions with atomic masses over 50. The main task of the Factory is the synthesis of new chemical elements with atomic numbers 119 and higher, as well as a detailed study of the nuclear and chemical properties of previously discovered superheavy elements. The Factory are being equipped with target materials, new separators and detectors for the study of the nuclear, atomic and chemical properties of the new elements.  
slides icon Slides THC01 [15.662 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THC01  
About • paper received ※ 11 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC02 First Beams Produced by the Texas A&M University Radioactive-Beam Upgrade 310
 
  • D.P. May, J.E. Ärje, B.T. Roeder, A. Saastamoinen
    Texas A&M University Cyclotron Institute, College Station, Texas, USA
  • F.P. Abegglen, H.L. Clark, G.J. Kim, G. Tabacaru
    Texas A&M University, Cyclotron Institute, College Station, Texas, USA
 
  Funding: United States Department of Energy, Grant DE-FG02-93ER40773
The first test beams of radioactive ions produced by the ion-guide-on-line (IGOL) system coupled to the charge-breeding electron-cyclotron-resonance ion source (CB-ECRIS) have been accelerated to high energy by the Texas A&M K500 cyclotron. The radioactive ions were first produced by energetic protons, provided by the K150 cyclotron, impinging on foil targets. Low charge-state ions were then swept by a flow of helium gas into an rf-only sextupole ion guide (SPIG) which transports them into the plasma of the CB-ECRIS. The K500 cyclotron and beam-line transport were tuned with analog beam before tuning the radioactive beam.
 
slides icon Slides THC02 [2.782 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THC02  
About • paper received ※ 13 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THD02 Central Region Upgrade for the Jyväskylä K130 Cyclotron 326
 
  • T. Kalvas, P.M.T. Heikkinen, H.A. Koivisto
    JYFL, Jyväskylä, Finland
  • E. Forton, W.J.G.M. Kleeven, J. Mandrillon, V. Nuttens
    IBA, Louvain-la-Neuve, Belgium
 
  The Jyväskylä K130 cyclotron has been in operation for more than 25 years providing beams from H to Au with energies ranging from 1 to 80 MeV/u for nuclear physics research and applications. At the typical energies around 5 MeV/u used for the nuclear physics program the injection voltage used is about 10 kV. The low voltage limits the beam intensity especially from the 18 GHz ECRIS HIISI. To increase the beam intensities the central region of the K130 cyclotron is being upgraded by increasing the injection voltage by a factor of 2. The new central region with spiral inflectors for harmonics 1-3 has been designed. The new central region shows better transmission in simulations than the original one for all harmonics and especially for h=2 typically used for nuclear physics. The engineering design for the new central region is being done.  
slides icon Slides THD02 [12.967 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-THD02  
About • paper received ※ 15 September 2019       paper accepted ※ 27 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA03 Energy Reduction of Varian’s ProBeam 250 MeV Cyclotron to 226 MeV 344
 
  • A. Roth, E.M. Akcöltekin, O. Boldt, F. Klarner, H. Röcken, T. Stephani, J.C. Wittschen
    VMS-PT, Troisdorf, Germany
 
  With its superconducting 250 MeV isochronous proton cyclotron AC250, Varian uses a powerful accelerator for the ProBeam particle therapy systems. However, data from clinical operation has shown that the vast majority of treatments is only making use of proton ranges of less than 30 cm WET (water equivalent thickness), i.e. beam energy of 218 MeV at the patient. This led to a decision at Varian in Dec 2018 to conduct a redesign program with the goal to reduce extraction energy of the ProBeam cyclotron to 226 MeV. We present beam dynamics simulations for the AC226 beam acceleration and extraction. They actually show that only a reduced main coil current and adapted magnetic shimming process, as well as a slightly lower RF frequency is needed for re-tune. Furthermore, results indicate that a similar performance as compared to the AC250 can be expected. A first of its kind (FOIK) AC226 cyclotron is built by seamless integration into Varian’s production process. The magnetic field measurement and shimming is completed, in-house RF and beam commissioning is planned for autumn 2019. We report on the status of the FOIK machine.  
slides icon Slides FRA03 [4.697 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-FRA03  
About • paper received ※ 14 September 2019       paper accepted ※ 25 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)