

Proton Accelerator Complex

- k = 130 isochronous sector cyclotron
 10 20 MHz
- two injectors:
 - 2 MV Tandetron[™]
 - 6 MV Van-de-Graaff, backup, time structures
- three target stations:
 - treatment room
 - experimental station
 (I_{max}(DC) = 10 nA)
 - beam line end for tests in cyclotron vault

- only 1700 hours of scheduled beam time: major events → huge impact on statistics
 - in 2015: human error increase of injector voltage too fast
 - many errors appear during start-up of accelerator

Accelerator Performance

- main "culprit" for most years: cyclotron (yellow)
- especially RF
- replacement of old low level control with modern system from iThemba labs in 2017 (poster TUP007)

Beam Time: Utilization

CHARITÉ HZB Helmholtz

• therapy:

- 68 MeV protons, quasi-DC, broad beam (\emptyset 50 mm), $I_{patient}$ < 3 nA
- deliverable by either Van-de-Graaff or Tandetron as injector
- experiments:
- broad or focused beam
- quasi DC to single pulses with t < 1 ns (single turn extraction)
- changes in intensity: 0.1 pA $\leq I_{target} \leq 1500$ nA
- 68 MeV protons, ⁴He: 50 MeV, 75 MeV, 90 MeV

Therapy:

Treatment of ocular melanomas

• past 10 years: ~ 220 patients each year in 12 therapy blocks

- 2018: 20 years of eye tumour therapy in Berlin
- overall (8/2019): more than 3600 patients
- special cases: children, pregnant and breast-feeding patients
- accompanying R&D for Medical Physics & Dosimetry
 - –e.g.: Determination of the radiation exposure to the fetus of a pregnant patient

Tumour control after 5 years:

- Ru-106: 91%¹
- I-125: 91%¹
- Protons: 96%^{1,2}
- LINAC (SRT): 94%^{1,9}
- Cyberknife (SRS): 73%^{4,5}

(Charité: ca. 92%⁷)

(Charité: ca. 96%3)

eye retention after 5 years:

• Ru-106:	>90%10
• I-125:	~90% ⁸
Protons:	>90% ^{2,6}
	700/0

- LINAC (SRT): ~78%⁹
- Cyberknife (SRS): ~73%^{4,5}

(Charité: ca. 95%3)

(Charité: ca. 95%⁷)

Literature:

¹Chang MY: Brit J Ophthalmol. 2013; ²Egger E: Int J Radiat Oncol Biol Phys 2001; ³Seibel I: Am J Ophthalmol 2015; ⁴Eibl-Lindner K: Melanoma Res. 2016; ⁵Yazici G: Int J Radiat Oncol Biol Phys 2017; ⁶Mishra KK: CCO 2016; ⁷Krause N: Diss.2015 ⁸Vonk DT: Brachytherapy 2015; ⁹Dunavoelgyi R: Int J Radiat Oncol Biol Phys 2011; ¹⁰Verschueren KMS: Radiother Oncol 2010

Experiments: Medical Physics Mice Irradiations – Motivation

- side effect of radiation therapy: radiation induced retinopathy 1 -2 years after treatment
- ophthalmologists want to irradiate <u>single</u> mice eyes to observe the chemical and biological changes in eye tissue

CHARITÉ HZB Helmholtz

Zentrum Berlin

 first step: obtain necessary permits

Experiments: Medical Physics Mice irradiation – technical challenges

- relatively small size of a mouse eye compared to human eyes:
 3 4 mm in diameter
- very small irradiation field with sharp dose fall-offs to the sides as well as in depth required
- Spread Out Bragg Peak with a maximum range of 7 mm and full modulation length

Experiments: Medical Physics Mice irradiation – technical details

- pre-absorber of 2 mm thickness reduces the maximum proton range further to 5 mm
- very sharp distal dose fall-off of less than
 1 mm: the second eye can by spared
- position of the mouse during irradiation is monitored using the same camera as for clinical treatment

- transport to the HZB from the animal husbandry of the Charité
- short period of time (1 to 2 hours) for acclimatization
- one mouse after the other is anesthetized and brought into the treatment room for irradiation
- mouse is positioned in front of the beam line with one eye placed at the isocenter
- after irradiation: mouse is brought back to her box and woken up
- transport back to Charité
- second eye, non-irradiated due to sharp distal fall-off
 → used as a control
- about 60 mice have been irradiated with doses from 0 CGE to 15 CGE
- about 6 months after irradiation \rightarrow

Accelerator Development

2007/08: replacement of RFQ with 2 MV Tandetron

- mechanical constraints in positioning
 - emergency exit
 - access to cyclotron
- at the end: compromise

Beam Transport RFQ → Cyclotron

Beam Transport Tandetron → Cyclotron

Tandetron \rightarrow Cyclotron: Tuning Issues

- start parameters from Tandetron not well known
 - parameters from Cadarache
- electrostatic quadrupole:
 - triplet with 3 (three!) power supplies: asymmetric quadrupole
 - asymmetric quadrupole

asymmetric beam

Tandetron → Cyclotron: Tuning Issues

- start parameters from Tandetron not well known
 - parameters from Cadarache
- electrostatic quadrupole:
 - triplet with 3 (three!) power supplies: asymmetric quadrupole
 - asymmetric beam
- was observed on beam profile monitor (BPM)
- tuning for a good transmission to and through cyclotron
- interpreted as broad x and narrow y beam
- slightly off-axis in y: slight offset in alignment

- + beam emittance is defined close to BPM
- \rightarrow tuning ambiguous
- installation of a harp for better reproducibility
- 48 wires in x and y (broad beam)
- mounted on standard movement unit
- connection via PCB boards and flat cables
- vacuum feed through: PCB board and epoxy
 - after 6 hours: vacuum better than 2 10⁻⁷ mbar
 - leak tested: 1 10⁻⁹ mbar/(l s)
 - mass spectrometer: nothing dangerous for electrostatic quadrupole nearby (30 kV)
- harp electronics from

Harp: Beam Measurements

Harp: Beam Measurements

- in X and Y: harp profile identical to BPM!
- why double peak in Y?
 - until now: explained as slight misalignment
- two beams ??
- yes: neutral particles (incomplete stripping)
- measurements & finite element calculations: start conditions after electrostatic quadrupole
- beam line calculations possible and confirmed by tuning

Experiments: Further Examples

- Accelerator Development:
 - preparation for FLASH experiments:
 dose rate > 40 Gy/s, t < 0.5s (poster TUP021)
 - beam delivery for experiments (poster TUP020)
- Radiation Hardness tests, e.g. for DLR:
 - 2004 parts of the Rosetta electronics irradiated
 - 2014: successful end of hibernation
- Proton Induced X-ray and γ-ray Emission:
 - helmets and silver coins from the Berlin Museums

The Rosetta mission

Europe's comet chaser

Conclusion

entrum Berlin

- since 06/1998 treatment of patients
 - Aug. 2019: > 3600 patients
 - past years: ~ 220 patients per year
- reliable accelerator operation, uptime generally better than 95 %
- on-going experiments for
 - investigation of retinopathy
 - dosimetry
 - rad hard tests

Thank you for your attention!

998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018