Paper | Title | Other Keywords | Page |
---|---|---|---|
MOP072 | FRIB Solenoid Package in Cryomodule and Local Magnetic Shield | cavity, cryomodule, operation, dipole | 235 |
|
|||
Funding: U.S. Department of Energy Office of Science under Cooperative Agreement DE -SC0000661 FRIB cryomodule design has a feature: solenoid package(s) and local magnetic shields in the cryomodule. In this design, exposing SRF cavities to a very strong fringe field from the solenoid is concerned. A tangled issue between solenoid package design and magnetic shield one has to be resolved. FRIB made intensive studies, designed, prototyped, validated the solenoid packages and magnetic shields, and finally certified them in the bunker test. This paper reports activity results, and LS1 commissioning results in FRIB tunnel. This is a FRIB success story. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP072 | ||
About • | paper received ※ 24 June 2019 paper accepted ※ 14 August 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP087 | IFMIF Resonators Development and Performance | cavity, SRF, cryomodule, linac | 293 |
|
|||
The prototype IFMIF cryomodule encloses eight superconducting 175 MHz beta 0.09 Half-Wave Resonators (HWR). They are designed together with the power coupler to accelerate a high intensity deuteron beam (125 mA) from to 5 to 9 MeV. One prototype HWR and the 8 cavities to be hosted in the cryomodule have been manufactured, prepared and tested. The paper describes the phases of the cavities development, including fabrication, processing, and RF resonant frequency management. We focus on the results of the RF tests which have been performed for all bare and jacketed HWRs in a vertical cryostat. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP087 | ||
About • | paper received ※ 23 June 2019 paper accepted ※ 03 July 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP102 | Alignment Monitoring System for the PIP-II Prototype SSR1 Cryomodule | target, alignment, cryomodule, survey | 332 |
|
|||
For the first prototype PIP-II SSR1 cryomodule, an alignment monitor system based on HBCAM will be used. The main focus will be changes in alignment due to shipping and handling or during cool down and operation process. The SSR1 cryomodule contains eight 325 MHz superconducting single spoke cavities and four solenoid¿based focusing lenses, and an alignment error better than 0.5 mm RMS for the transverse solenoid, based on function requirement specification. The alignment monitor system has been configured to the objectives of SSR1 cryomodule: low space for integration; presence of magnetic fields; exposure to non-standard environmental conditions such as high vacuum and cryogenic temperatures. The mechanical design and first results of system performance will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP102 | ||
About • | paper received ※ 28 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOP105 | A Superconducting Magnetic Shield for the Photoelectron Injector of BERLinPro | cavity, gun, shielding, operation | 335 |
|
|||
Magnetic fields are a big issue for SRF cavities, especially in areas with strong electromagnets or ferromagnetic materials. Magnetic shieldings consisting of metal alloys with high magnetic permeability are often used to reroute the external magnetic flux from the cavity region. Those Mu metal shields are typically designed for weak magnetic fields like Earth’s magnetic field. Next to strong magnetic field sources like superconducting (SC) solenoids, those shields can be easily saturated resulting in a degradation of the shielding efficiency and a permanent magnetization. For the photoinjector of BERLinPro a new SC solenoid will be installed inside the cryomodule next to the SRF gun cavity. Calculations show that the fringe fields of the solenoid during operation can saturate the cavity Mu-metal shields. Therefore we designed an SC magnetic shield placed between solenoid and cavity shield to protect the latter during magnet operation. In this paper we will present the design and first measurements of this SC magnetic shield. | |||
![]() |
Poster MOP105 [2.011 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP105 | ||
About • | paper received ※ 04 July 2019 paper accepted ※ 14 August 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP051 | Progress Towards Commissioning the Cornell DC Field Dependence Cavity | cavity, niobium, multipactoring, SRF | 543 |
|
|||
The Cornell DC Field Dependence Cavity is a new coaxial test resonator designed to study the impact of strong (up to 200 mT or more) DC surface magnetic fields on the superconducting surface resistance, providing physical insight into the root of the ‘‘anti-Q-slope’’ and probing critical fields. In this report we report progress in the commissioning of this new apparatus, including finalized design elements and results of prototype tests. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP051 | ||
About • | paper received ※ 25 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP060 | Development of Temperature and Magnetic Field Mapping System for Superconducting Cavities at KEK | cavity, controls, site, radio-frequency | 583 |
|
|||
A temperature and magnetic field mapping system for a single cell superconducting cavity is being developed at KEK. The mapping system is used to observe the temperature distribution and the ambient magnetic field distribution around the outer surface of the cavity. A total of 36 boards at every 10 degrees are attached on the cavity. Each board consists of 15 carbon resistors of 100 Ω at room temperature and 3 AMR sensors of X, Y and Z directions at the equator. The calibration of the resisters and AMR sensors were carefully and precisely carried out at low temperature. The data logging system using NI loggers is enabled to measure within 1 ms in the whole cavity surface. The initial test results in the vertical test of the single-cell cavity will be reported in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP060 | ||
About • | paper received ※ 05 July 2019 paper accepted ※ 05 July 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP078 | Lower Critical Field Measurement of NbN Multilayer Thin Film Superconductor at KEK | cavity, SRF, shielding, radio-frequency | 632 |
|
|||
Funding: The work is supported by Japan Society for the Promotion of Science Grant-in-Aid for Young Scientist (A) No.17H04839. The multilayer thin film structure of the superconductor has been proposed by A. Gurevich to enhance the maximum gradient of SRF cavities. The lower critical field Hc1 at which the vortex start penetrating the superconducting material will be improved by coating Nb with thin film superconductor such as NbN. It is expected that the enhancement of Hc1 depends on the thickness of each layer. In order to determine the optimum thickness of each layer and to compare the measurement results with the theoretical prediction proposed by T. Kubo, we developed the Hc1 measurement system using the third harmonic response of the applied AC magnetic field at KEK. For the Hc1 measurement without the influence of the edge or the shape effects, the AC magnetic field can be applied locally by the solenoid coil of 5mm diameter in our measurement system. ULVAC made the NbN-SiO2 multilayer thin film samples of various NbN thicknesses. In this report, the measurement result of the bulk Nb sample and NbN-SiO2 multilayer thin film samples of different thickness of NbN layer will be discussed. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP078 | ||
About • | paper received ※ 23 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP089 | FRIB LS1 Cryomodule’s Solenoid Commissioning | cryomodule, MMI, controls, linac | 671 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511. The Facility for Rare Isotope Beams (FRIB) is a heavy ion accelerator that produces rare isotopes for science. To achieve the high beam quality of FRIB¿s linear accelera-tor (linac), the superconducting solenoid packages are employed for beam focusing and steering in the cry-omodule. The solenoid packages will generate a maxi-mum 8T focusing field along beam direction and 0.124 T bending field for beam steering. A total 74 solenoid packages have been produced and the first segment linac (LS1) of FRIB have completed commissioning and beam acceleration. In this paper, the cryomodule¿s solenoid commissioning and the performance of the LS1 linac are introduced. The lessons learned during the testing will also be presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP089 | ||
About • | paper received ※ 24 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP092 | Experiences of Superconducting Radio Frequency Coldmass Production for the FRIB Linear Accelerator | cavity, cryomodule, vacuum, SRF | 675 |
|
|||
Funding: *Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511. The superconducting radio frequency (SRF) portion of the Facility for Rare Isotope Beams (FRIB) linear accelerator consists of 46 cryomodules of 6 different types. Each cryomodule contains a coldmass consisting of a string of SRF resonators. There are four different types of resonators; a β=0.041 quarter wavelength resonator (QWR), a β=0.085 QWR, a β=0.29 half wavelength resonator (HWR), and a β=0.53 HWR. In total there are 324 SRF resonators in the FRIB linear accelerator. This paper provides a summary of experiences from the assembly of all FRIB coldmass types in a clean room environment. |
|||
![]() |
Poster TUP092 [1.481 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP092 | ||
About • | paper received ※ 23 June 2019 paper accepted ※ 14 August 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP095 | Lessons Learned Assembling the SSR1 Cavities String for PIP-II | cavity, vacuum, cryomodule, SRF | 690 |
|
|||
The string assembly of the prototype Single Spoke Resonator type 1 (SSR1) cryomodule for PIP-II at Fermilab was successfully completed. Lessons learned from the preparation, assembly and the quality control activities of the final fully integrated assembly will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP095 | ||
About • | paper received ※ 28 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUP098 | Preparation for the Advanced Demonstrator Testing at GSI | cavity, linac, cryomodule, heavy-ion | 698 |
|
|||
The superconducting (sc) heavy ion Helmholtz Linear Accelerator (HELIAC) is under development at GSI. As a first step, the cw-Linac demonstrator was the first part for the proposed cw-LINAC@GSI. A superconducting CH-cavity, embedded by two superconducting solenoids has been tested with beam in 2017/2018 successfully. The sc CH-structure, designed at Goethe-University of Frankfurt, is the key component and offers a variety of research and development. As a next step the first cryostat of the HELIAC, the so called Advanced Demonstrator will be tested in the same testing environment at GSI. Therefore, a bigger concrete Bunker as well as the connection to the cryo plant is under development. The cold string was assembled in a rehabilitated clean room at GSI. For future clean room assemblies a fully equipped clean room is under preparation at Helmholtz-Institut Mainz. The mechanical suspension, composed of hanging components on crossed steel ropes, is a reliable concept to prevent the displacement during cool down. The cryogenic systems as well as all other mechanical tasks were solved. These and the future Advanced Demonstrator preparation will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP098 | ||
About • | paper received ※ 22 June 2019 paper accepted ※ 01 July 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WETEA3 | Status of the IFMIF/EVEDA Superconducting Linac | cavity, SRF, cryomodule, linac | 735 |
|
|||
The IFMIF accelerator aims to provide an accelerator-based D-Li neutron source to produce high intensity high energy neutron flux to test samples as possible candidate materials to a full lifetime of fusion energy reactors. A prototype of the low energy part of the accelerator (LIPAc) is under construction at Rokkasho Fusion Institute in Japan. It includes one cryomodule containing 8 half-wave resonators (HWR) operating at 175 MHz and eight focusing solenoids. The talk will cover the progress of developments in the IFMIF/EVEDA cryomodule: the qualification of 8 cavities, the RF conditioning results of 8 high-power couplers, the manufacturing and test of the 8 superconducting solenoids and the equivalent operational equivalent tests performed at Saclay. The assembling status of the cryomodule at Rokkasho site will also be presented. | |||
![]() |
Slides WETEA3 [11.091 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA3 | ||
About • | paper received ※ 20 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WETEA5 | FRIBCavity and Cryomodule Performance, Comparison with the Design and Lessons Learned | cryomodule, alignment, vacuum, cavity | 742 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511. The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) requires the production of 46 cryomodules. Design is complete on all six cryomodule types which utilize four superconducting radio frequency (SRF) cavity designs and superconducting solenoids. The FRIB cryomodules utilize an innovative bottom up approach to achieve alignment tolerance and simplify production assembly. The cryomodule testing includes qualification of the resonator performance, fundamental power couplers, tuners, and cryogenic systems. FRIB beam commissioning has been performed on 15 cryomodules in the FRIB and validates the FRIB cryomodule bottom up assembly and alignment method. This paper will report the FRIB cryomodule design, performance, and the alignment results and their impact on beam commissioning. |
|||
![]() |
Slides WETEA5 [14.640 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA5 | ||
About • | paper received ※ 21 June 2019 paper accepted ※ 29 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP050 | Measurement of the Magnetic Field Penetration into Superconducting Thin Films | experiment, SRF, cavity, FEL | 978 |
|
|||
The magnetic field at which first flux penetrates is a fundamental parameter characterizing superconducting materials for SRF cavities. Therefore, an accurate technique is needed to measure the penetration of the magnetic field directly. The conventional magnetometers are inconvenient for thin superconducting film measurements because these measurements are strongly influenced by orientation, edge and shape effects. In order to measure the onset of field penetration in bulk, thin films and multi-layered superconductors, we have designed, built and calibrated a system combining a small superconducting solenoid capable of generating surface magnetic field higher than 500 mT and Hall probe to detect the first entry of vortices. This setup can be used to study various promising alternative materials to Nb, especially SIS multilayer coatings on Nb that have been recently proposed to delay the vortex penetration in Nb surface. In this paper, the system will be described and calibration will be presented. | |||
![]() |
Poster THP050 [1.201 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP050 | ||
About • | paper received ※ 20 June 2019 paper accepted ※ 30 June 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP062 | Progress in FRIB Cryomodule Bunker Tests | cavity, cryomodule, SRF, operation | 1029 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams (FRIB) is under construction at Michigan State University (MSU). The FRIB superconducting driver linac will accelerate ion beams to 200 MeV per nucleon. The driver linac requires 104 quarter-wave resonators (QWRs, β = 0.041 and 0.085) and 220 half-wave resonators (HWRs, β = 0.29 and 0.54). The jacketed resonators are Dewar tested at MSU before installation into cryomodules. The cryomodules for β = 0.041, 0.085, and 0.29 have been completed and certified; 32 out of 49 cryomodules are certified via bunker test (as of March 2019). FRIB cryomodule needs 74 solenoid packages: 8-25 cm packages for 0.041 QWR CMs, 36-50 cm for 0.085 CMs, 12-50 cm for 0.29 CMs, and 18-50 cm for 0.53 CMs. The bunker certification completed 58 packages. All the magnets energized at FRIB goal (90 A/8 T for solenoid and 19 A/0.064 Tm for dipoles), all cavities tested at or above specified operating gradient. In this paper, we report the bunker test result. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP062 | ||
About • | paper received ※ 23 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THP104 | Numerical Estimation of Beam Break-Up Instability in TESLA Cavities | dipole, cavity, linac, focusing | 1178 |
|
|||
In this article the numerically estimated BBU instability behaviors of a 9 cell superconducting TESLA cavity are presented for first two pass-band trapped dipole modes (18 in all). The given BBU threshold current values are calculated by the method of beam energy gain averaging on phases of dipole mode fields. BBU instability behaviors in cases of applying the cavities in Linacs as well in Energy Recovery Linacs (ERLs) are considered. The BBU influence on beam emittance degradation is demonstrated. Examples for suppression of beam BBU oscillations by a solenoid focusing and applying of an external RF generator with a feedback are visualized. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP104 | ||
About • | paper received ※ 23 June 2019 paper accepted ※ 02 July 2019 issue date ※ 14 August 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||