A SUPERCONDUCTING MAGNETIC SHIELD FOR THE PHOTOELECTRON INJECTOR OF bERLinPro

ABSTRACT
- Magnetic fields are a big issue for SRF cavities, especially in areas with strong electromagnets or ferromagnetic materials
- Mu metal shields (metal alloys with high magnetic permeability) to reroute the external magnetic flux
- typically designed for weak magnetic fields (Earth’s magnetic field)
  -> BUT: next to strong magnetic field sources like superconducting (SC) solenoids, they can be easily saturated
  -> degradation of the shielding efficiency and permanent magnetization
- we designed an SC magnetic shield placed between the solenoid and the cavity shield to protect the latter during solenoid magnet operation

INTRODUCTION

DESIGN AND EXPERIMENTAL SETUP

new cooling lines for LHe with lateral Al clamps

- two Cu plates for cooling around the Nb plates fixed by an Al framework
- this new design is directly cooled by LHe tubes at the lateral Al clamps

- solenoid magnet, SC shield and a dummy beam tube were installed in the injector modul
  - first test: only a passive shield cooling by the cold dummy tube (was not succesful)
  - two cernox sensors connected with Nb plate
  - six 1D-Hall sensors measure the magnetic field around the shield
  - their values can be compared with the calculated field with respect to the sensor positions
  - an Eddy-current sensor observes the ohmic resistance of the shield during cool down

  -> second test: shield with a direct cooling is planned

CONCLUSION
- it is important to analyze interaction of magnetic sources with sensitive materials (Mu shields)
- fringe fields of magnets can produce high magnetic flux density in shield material, up to saturation
- one option to protect the shields is a superconducting shield next to the Mu shield (deflecting most of the magnetic flux)
- principle and improved design of an SC shield were presented
- up to now, it was not possible to achieve the superconducting state of the Nb shield.
- further tests with the improved cooling are planned.

CORRESPONDING AUTHOR
Dr. Jens Völker
Helmholtz-Zentrum Berlin
jens.voelker@helmholtz-berlin.de