Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPLM13 | Investigations of the Electron Beam Energy Jitter Generated in the Photocathode RF Gun at the Advanced Photon Source Linac | gun, laser, electron, cathode | 124 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357. Characterizations continue of the electron beam properties of a recently installed S-band photocathode (PC) rf gun at the Advanced Photon Source Linac facility. In this case, we have utilized a low-energy spectrometer beam line located 1.3 m downstream of the gun cavity to measure the electron beam energy, energy spread, and energy jitter. The nominal energy was 6.5 MeV using a gun gradient of 110 MV/m, and the energy spread was ~17 keV when driven by a 2.5-ps rms duration UV laser pulse at the selected rf gun phase. An energy jitter of 25 keV was initially observed in the spectrometer focal plane images. This jitter was partly attributed to the presence of both the 2nd and 3rd harmonics of the 119 MHz synchronization signal provided to the phase locked loop of the drive laser oscillator. The addition of a 150-MHz low-pass filter in the 119-MHz line strongly attenuated the two harmonics and resulted in a reduced energy jitter of ~15 keV. Comparisons of the gun performance to ASTRA simulations will also be presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLM13 | ||
About • | paper received ※ 28 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPLO09 | A Pulsed, Current Regulated Magnet Power Supply for Small Magnets | quadrupole, injection, controls, operation | 252 |
|
|||
Funding: Work supported by U. S. Department of Energy grant number DESC00010301 The University of Maryland Electron Ring (UMER) has two pulsed quadrupoles in the injection section that must be current regulated to the same precision as the other DC quadrupoles in the ring, as well as accurately synchro-nized to the ring operating cycle. To meet this need, a practical pulsed current, regulated power supply has been designed and built using a commercial power operational amplifier for output, standard operational amplifiers for feedback control and monitoring, and matched resistor pairs to produce the desired transfer function of 10 Volts to 6 Amperes. For other applications the circuit can be modified to produce a range of transfer functions by varying the appropriate resistor pair ratios. Output pulse width and timing are generated by a standardized TTL pulse from the control system that gates the output of the amplifier. Installed safety circuitry detects the absence of a proper control pulse, an open circuit or shorted output, and measures and returns to the control system the actual operating amplitude of the current pulse. In this paper we present the design, implementation, and operational results of the prototyped pulsed current source. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-MOPLO09 | ||
About • | paper received ※ 28 August 2019 paper accepted ※ 04 September 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPLH01 | Longitudinal Beam Profile Measurement by Silicon Detector in Facility for Rare Isotope Beams at Michigan State University | detector, emittance, rfq, linac | 799 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University The Facility for Rare Isotope Beams (FRIB) includes a continuous wave superconducting linear accelerator designed to deliver 400 kW ion beams with energies above 200 MeV/u. The beam commissioning of the first three cryomodules took place in the summer of 2018. A temporary diagnostic station installed after the first three cryomodules included a Silicon Detector (SiD) to measure absolute energy and bunch shape of 40Ar and 86Kr beams accelerated up to 2.3 MeV/u. The beam longitudinal emittance was evaluated by measuring bunch shapes while the bunching field amplitude of the upstream resonator was varied. In this paper, we will present the SiD setup and measurement results. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2019-WEPLH01 | ||
About • | paper received ※ 28 August 2019 paper accepted ※ 31 August 2019 issue date ※ 08 October 2019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||