Keyword: septum
Paper Title Other Keywords Page
MOPOB06 MAX IV and Solaris Linac Magnets Production Series Measurement Results ion, linac, gun, storage-ring 79
 
  • M.A.G. Johansson
    MAX IV Laboratory, Lund University, Lund, Sweden
  • R. Nietubyć
    NCBJ, Świerk/Otwock, Poland
 
  The linacs of the MAX IV and Solaris synchrotron radiation light sources, currently in operation in Lund, Sweden, and Kraków, Poland, use various conventional magnet designs. The production series of totally more than 100 magnets of more than 10 types or variants, which were all outsourced to industry, with combined orders for the types that are common to both MAX IV and Solaris, were completed in 2013 with mechanical and magnetic QA conforming to specifications. This article presents an overview of the different magnet types installed in these machines, and mechanical and magnetic measurement results of the full production series.  
poster icon Poster MOPOB06 [2.535 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-MOPOB06  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOA63 Septum Magnet Design for APS-U ion, injection, ECR, multipole 1231
 
  • M. Abliz, M. Borland, H. Cease, G. Decker, M.S. Jaski, J.S. Kerby, U. Wienands, A. Xiao
    ANL, Argonne, Illinois, USA
 
  Funding: * Work supported by the U. S. Department of Energy, Office of Science, under Contract No. DE AC02 06CH11357
The Advanced Photon Source is in the process of developing an upgrade (APS-U) of the storage ring from a double-bend to a multi-bend lattice. A swap-out injection is planned for the APS-U lattice to keep a constant beam current and accommodate small, dynamic aperture. A septum magnet that has a minimum thickness of 2 mm with an injection field of 1.06 T has been designed. The stored beam chamber has an 8 mm x 6 mm super-ellipsoidal aperture. The required total deflecting angle is 89 mrad with a ring energy of 6 GeV. The magnet is straight, but is tilted in yaw, roll, and pitch from the stored beam chamber in order to meet the swap out injection requirements for the APS-U lattice. In order to minimize the leakage field inside the stored beam chamber, four different techniques were utilized in the design. As a result, the horizontal deflecting angle of the stored beam was held to only 5 μrad, and the integrated skew quadrupole inside the stored beam chamber was held to 0.09 T. The detailed techniques that were applied to the design, the field multipoles, and the resulting trajectories of the injected and stored beams are reported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-NAPAC2016-THPOA63  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)