Author: Welsch, C.P.
Paper Title Page
MOPOPT046 Linearity and Response Time of the LHC Diamond Beam Loss Monitors in the CLEAR Beam Test Facility at CERN 355
SUSPMF092   use link to see paper's listing under its alternate paper code  
 
  • S. Morales Vigo, E. Calvo Giraldo, L.A. Dyks, E. Effinger, W. Farabolini, P. Korysko, A.T. Lernevall, B. Salvachúa, C. Zamantzas
    CERN, Meyrin, Switzerland
  • S. Morales Vigo, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Chemical Vapour Deposition (CVD) diamond detectors have been tested during the Run 2 operation period (2015-2018) as fast beam loss monitors for the Beam Loss Monitoring (BLM) system of the Large Hadron Collider (LHC) at CERN. However, the lack of raw data recorded during this operation period restrains our ability to perform a deep analysis of their signals. For this reason, a test campaign was carried out at the CLEAR beam test facility at CERN with the aim of studying the linearity and response time of the diamond detectors against losses from electron beams of different intensities. The signal build-up from multi-bunched electron beams was also analyzed. The conditions and procedures of the test campaign are explained, as well as the most significant results obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT046  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT048 Design of a Prototype Gas Jet Profile Monitor for Installation Into the Large Hadron Collider at CERN 363
 
  • R. Veness, M. Ady, C. Castro Sequeiro, T. Lefèvre, S. Mazzoni, I. Papazoglou, A. Rossi, G. Schneider, O. Sedláček, K. Sidorowski
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N. Kumar, A. Salehilashkajani, O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  The Beam-Gas Curtain or BGC is the baseline instrument for monitoring the concentricity of the LHC proton beam with a hollow electron beam for the hollow e-lens (HEL) beam halo suppression device which is part of the High-Luminosity LHC upgrade. The proof-of-principles experiments of this gas-jet monitor have now been developed into a prototype instrument which has been built for integration into the LHC ring and is now under phased installation for operation in the upcoming LHC run. This paper describes the challenges overcome to produce a gas-jet fluorescence monitor for the ultra-high vacuum accelerator environment. It also presents preliminary results from the installation of the instrument at CERN.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT048  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT054 A Modified Nomarski Interferometer to Study Supersonic Gas Jet Density Profiles 385
 
  • C. Swain, Ö. Apsimon, A. Salehilashkajani, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Ö. Apsimon, A. Salehilashkajani, C. Swain, C.P. Welsch, J. Wolfenden, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project grant No. ST/T001941/1, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1.
Gas jet-based non-invasive beam profile monitors, such as those developed for the high luminosity Large Hadron Collider (HL-LHC) upgrade, require accurate, high resolution methods to characterise the supersonic gas jet density profile. This paper proposes a modified Nomarski interferometer to non-invasively study the behaviour of these jets, with nozzle diameters of 1 mm or less in diameter. It discusses the initial design and results, alongside plans for future improvements. Developing systems such as this which can image on such a small scale allows for improved monitoring of supersonic gas jets used in several areas of accelerator science, thus allowing for improvements in the accuracy of experiments they are utilised in.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT054  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT055 A Gas Jet Beam Profile Monitor for Beam Halo Measurement 389
 
  • O. Stringer, N. Kumar, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • N. Kumar, C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1 and the STFC Cockcroft Institute core grant No. ST/G008248/1.
The gas jet beam profile monitor is a non-invasive beam monitor that is currently being commissioned at Cockcroft Institute. It utilises a supersonic gas curtain which transverses the beam at an angle of 45 degrees and measures beam-induced ionisation interactions of the gas to produce a 2D transverse beam profile image. This paper builds upon previously used single-slit skimmers and improves their ability to form the gas jet into a desired distribution for imaging beam halo. A skimmer device removes off-momentum gas particles and forms the jet into a dense thin curtain, suitable for transverse imaging of the beam. The use of a novel double-slit skimmer is shown to provide a mask-like void of gas over the beam core, increasing the relative intensity of the halo interactions for measurement. Such a non-invasive monitor would be beneficial to storage rings by providing real time beam characteristic measurements without affecting the beam. More specifically, beam halo behaviour is a key characteristic associated with beam losses within storage rings.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT055  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT056 Commissioning of a Gas Jet Beam Profile Monitor for EBTS and LHC 393
 
  • H.D. Zhang, N. Kumar, A. Salehilashkajani, O. Sedláček, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • M. Ady, T. Lefèvre, S. Mazzoni, I. Papazoglou, A. Rossi, G. Schneider, O. Sedláček, K. Sidorowski, R. Veness
    CERN, Meyrin, Switzerland
  • P. Forck, S. Udrea
    GSI, Darmstadt, Germany
  • N. Kumar, A. Salehilashkajani, O. Sedláček, O. Stringer, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the HL-LHC-UK II project funded by STFC and CERN and the STFC Cockcroft core grant No. ST/G008248/1.
A gas jet beam profile monitor was designed for measuring the electron beam at the electron beam test stand (EBTS) for the Hollow electron lens (HEL) and the proton beam in the large hadron collider (LHC). It is partially installed in the LHC during the second long shutdown. The current monitor is tailored to the accelerator environment including vacuum, geometry, and magnetic field for both the EBTS and the LHC. It features a compact design, a higher gas jet density, and a wider curtain size for a better integration time and a larger detecting range. In this contribution, the commissioning of this monitor at the Cockcroft Institute will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT056  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS016 Application of Nanostructures and Metamaterials in Accelerator Physics 659
 
  • J. Resta-López
    ICMUV, Paterna, Spain
  • Ö. Apsimon, C. Bonțoiu, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • B. Galante
    CERN, Meyrin, Switzerland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work is supported by the Generalitat Valenciana under Grant agreement No. CIDEGENT/2019/058.
Carbon-based nanostructures and metamaterials offer extraordinary mechanical and opto-electrical properties, which make them suitable for applications in diverse fields, including, for example, bioscience, energy technology and quantum computing. In the latest years, important R&D efforts have been made to investigate the potential use of graphene and carbon-nanotube (CNT) based structures to manipulate and accelerate particle beams. In the same way, the special interaction of graphene and CNTs with charged particles and electromagnetic radiation might open interesting possibilities for the design of compact coherent radiation sources, and novel beam diagnostics techniques as well. This paper gives an overview of novel concepts based on nanostructures and metamaterials with potential application in the field of accelerator physics. Several examples are shown and future prospects discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS016  
About • Received ※ 08 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 13 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS028 Stability and Lifetime Studies of Carbon Nanotubes for Electron Cooling in ELENA 699
 
  • B. Galante, G. Tranquille
    CERN, Meyrin, Switzerland
  • J. Resta-López, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J. Resta-López, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • J. Resta-López
    ICMUV, Paterna, Spain
 
  Funding: Work supported by EU Horizon 2020 research and innovation programme under the Marie Sk’odowska-Curie grant agreement No 721559.
Electron cooling is a fundamental process to guarantee beam quality in low energy antimatter facilities. In ELENA, the electron cooler reduces the emittance blow-up of the antiproton beam so that a focused and bright beam can be delivered to the experiments at the unprecedentedly low energy of 100 keV. To achieve a cold beam at this low energy, the electron gun must emit a monoenergetic and relatively intense electron beam. An optimization of the electron gun involving a cold cathode is studied to investigate the feasibility of using carbon nanotubes (CNTs) as cold electron field emitters. CNTs are considered among the most promising field emitting materials. However, stability data for emission over hundreds of hours, as well as lifetime and conditioning process studies to ensure optimal performance, are still incomplete or missing, especially if the aim is to use them in operation. This contribution reports experiments that characterize these properties and assess whether CNTs are suitable to be used as cold electron field emitters for many hundreds of hours.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS028  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST049 Simulation Study for an Inverse Designed Narrowband THz Radiator for Ultrarelativistic Electrons 973
 
  • G. Yadav, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • T. Feurer
    Universität Bern, Institute of Applied Physics, Bern, Switzerland
  • U. Haeusler, A. Kirchner
    FAU, Erlangen, Germany
  • B. Hermann, R. Ischebeck
    PSI, Villigen PSI, Switzerland
  • P. Hommelhoff
    University of Erlangen-Nuremberg, Erlangen, Germany
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  THz radiation has many applications, including medical physics, pump-probe experiments, communications, and security systems. Dielectric grating structures can be used to generate cost-effective and beam synchronous THz radiation based on the Smith Purcell effect. We present a 3-D finite difference time domain (FDTD) simulation study for the THz radiation emitted from an inverse designed grating structure after a 3 GeV electron bunch traverses through it. Our farfield simulation results show a narrowband emission spectrum centred around 881 um, close to the designed value of 900 um. The grating structure was experimentally tested at the SwissFEL facility, and our simulated spectrum shows good agreement with the observed one.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST049  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 12 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST050 Liverpool Centre for Doctoral Training for Innovation in Data Intensive Science 976
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This new Center for Doctoral Training has received funding from the UK’s Science and Technology Facilities Council.
The Liverpool center for doctoral training for innovation in data intensive science (LIV. INNO) is an inclusive hub for training three cohorts of students in data intensive science. Starting in October 2022, each year will train about 12 PhD students in applying data skills to address cutting edge research challenges across astrophysics, nuclear, theoretical and particle physics, as well as accelerator science. This framework is expected to provide an ideal basis for driving science and innovation, as well as boosting the employability of the LIV. INNO PhD students. This contribution gives examples of the accelerator science R&D projects in the center. It includes details about research into the optimization of 3D imaging techniques and the characterization of photocathodes for accelerator applications.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST050  
About • Received ※ 05 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST051 Using Data Intensive Science for Accelerator Optimization 980
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work was supported by STFC under grant agreement ST/P006752/1.
Particle accelerators and light sources are some of the largest, most data intensive, and most complex scientific systems. The connections and relations between machine subsystems are complicated and often nonlinear with system dynamics involving large parameter spaces that evolve over multiple relevant time scales and accelerator systems. In 2017, the Liverpool Centre for Doctoral Training in Data Intensive Science (LIV. DAT) was established. With almost 40 PhD students, the centre is now established as an international hub for training PhD students in data intensive science. This contribution presents results from studies carried out in LIV. DAT into novel high gradient accelerators with a focus on the data science techniques that were used. This includes studies into inverse-designed narrowband THz radiators for ultra-relativistic electrons, simulation of the transverse asymmetry and inhomogeneity on seeded self-modulation of beams in plasma, as well as studies into the physical aspects of collinear laser injection in Trojan Horse laser plasma experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST051  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK065 Design of a Passive Superconducting Harmonic Cavity for HALF Storage Ring 1378
 
  • Y. Wei, B. Du, G. Feng, D. Jia, J. Pang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
  • C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Higher harmonic cavities, also known as Landau cavities, have been proposed to improve beam lifetime and provide Landau damping by lengthening the bunch without energy spread for stable operations of present and future low-emittance storage rings. This contribution presents design of a passive superconducting 3rd-harmonic cavity (super-3HC) for the planned Hefei Advanced Light Facility (HALF) at University of Science and Technology of China. It is designed to provide 0.43 MV at 1499.4 MHz for the nominal 2.2 GeV, 350 mA electron beam, and 1.44 MV main RF voltage in storage ring. Through optimizations it has a low R/Q < 45 Ohm, which has potential to achieve a good bunch lengthening. Higher-order-modes are strongly damped using a pair of room-temperature silicon carbide (SiC) rings to meet the requirement of beam instabilities. In addition, preliminary engineering design for the super-3HC cryomodule is also described in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK065  
About • Received ※ 03 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT007 First Interaction Region Local Coupling Corrections in the LHC Run 3 1838
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
The successful operation of large scale particle accelerators depends on the precise correction of unavoidable magnetic field or magnet alignment errors present in the machine. During the LHC Run 2, local linear coupling in the interaction regions (IR) was shown to have a significant impact on the beam size, making its proper handling a necessity for Run 3 and the High Luminosity LHC (HL-LHC). A new approach to accurately minimise the local IR linear coupling based on correlated external variables such as the |C-| had been proposed, which relies on the application of a rigid waist shift in order to create an asymmetry in the IR optics. In this contribution, preliminary corrections from the 2021 beam test and the early 2022 commissioning are presented, as well as first results of the new method’s experimental configuration tests in the LHC Run 3 commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT007  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT008 Supervised Machine Learning for Local Coupling Sources Detection in the LHC 1842
SUSPMF001   use link to see paper's listing under its alternate paper code  
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
Local interaction region (IR) linear coupling in the LHC has been shown to have a negative impact on beam size and luminosity, making its accurate correction for Run 3 and beyond a necessity. In view of determining corrections, supervised machine learning has been applied to the detection of linear coupling sources, showing promising results in simulations. An evaluation of different applied models is given, followed by the presentation of further possible application concepts for linear coupling corrections using machine learning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT008  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK029 Advances in Low Energy Antimatter Beam Generation and Manipulation 2118
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 721559.
The Accelerators Validating Antimatter physics (AVA) project has enabled an interdisciplinary and cross-sector R&D program on low energy antimatter research. The network comprises 13 universities, 9 national and inter-national research centers and 13 partners from industry. Between 2016 and 2021, AVA has successfully trained 16 early-stage researchers that were based at universities, research centers and companies across Europe where they carried out cutting edge research into low energy antimat-ter physics and related technologies. This contribution presents several research highlights that originated within or on the basis of AVA: Results from studies into carbon nano-tubes as field emitters for cold electron beams with supe-rior beam quality, the design of a low energy negative ion injection beamline for experiments with antiprotonic atoms, and studies into realistic simulations of antiproton deceleration in foil degraders.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK029  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK030 Modelling Growth and Asymmetry in Seeded Self-Modulation of Elliptical Beams in Plasma 2122
 
  • A. Perera, Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • Ö. Apsimon, A. Perera, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This work was supported by STFC UK grant ST/P006752/1. The Authors are grateful for computing time provided by the STFC Scientific Computing Department’s SCARF cluster.
The seeded self-modulation (SSM) of long particle bunches for the generation of gigavolts-per-meter wakefields that can accelerate witness electron beams was first shown using the Super Proton Synchrotron beam as a driver by the AWAKE experiment. The stability of the produced microbunch trains over tens or hundreds of meters is crucial for extrapolating this scheme as proposed for use in several high energy plasma-based linear colliders. However, aside from the competing hosing instability, which has been shown to be suppressible by SSM when that process saturates, few works have examined other effects of transverse asymmetry in this process. Here, we use analytical modelling and 3D particle-in-cell simulations with QuickPIC to characterise the impact on the SSM growth process due to transverse asymmetry in the beam. A metric is constructed for asymmetry in simulation results, showing that the initial azimuthal complexity changes only slightly during SSM growth. Further, we show quantitative agreement between simulations and analytical predictions for the scaling of the reduction SSM growth rate with unequal aspect ratio of the initial beam profile. These results serve to inform planning and tolerances for both AWAKE and other SSM-based novel acceleration methods in the future.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK030  
About • Received ※ 09 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK031 Low-Energy Negative Ion Injection Beamline for Experiments with Antiprotonic Atoms at AEgIS 2126
 
  • V. Rodin, A. Farricker, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • G. Cerchiari
    Institut für Experimentalphysik, Universtität Innsbruck, Innsbruck, Austria
  • M. Doser, G. Khatri
    CERN, Meyrin, Switzerland
  • G. Kornakov
    Warsaw University of Technology, Warsaw, Poland
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Research was funded by Warsaw University of Technology within the Excellence Initiative: Research University (IDUB) programme
Interaction of low-energy antiprotons with nuclear targets provided fundamental knowledge about proton and neutron densities of many nuclei through the capture process, cascade on lower electron orbits, and annihilation with the nucleon. The expelled electrons produce X-rays and with the recoil particles after annihilation, thus, a sufficient amount of information can be obtained about this interaction. However, all previous experiments were done via formation of antiprotonic atoms in solid or gaseous targets. Therefore, annihilation occurs prior reaching the S or P orbital levels and precise measurements are missing. Recently, AEgIS collaboration proposed a conceptually new experimental scheme. The creation of cold antiprotonic atoms in a vacuum guarantees the absence of the Stark effect. And with the sub-ns timing and synchronization, the previous experimental obstacles would be resolved. This will allow studying atomic properties, evolution, and fragmentation process with improved precision and extended lifetimes. In this contribution, we present an overview of the experimental scheme as well as various aspects of negative ion injection beamline into the AEgIS experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK031  
About • Received ※ 08 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 13 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK032 Fast Electromagnetic Models of Existing Beamline Simulations 2130
 
  • S. Padden, E. Kukstas, P. Pusa, V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • S. Padden, V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The AD-ELENA complex decelerates antiprotons to ener- gies of 100 keV before transport to experiments through elec- trostatic transfer lines. Transfer line optics are traditionally designed from a lattice based approach and are unaffected by external effects. Presented is a method of rapidly proto- typing MAD-X simulations into G4Beamline models which propagate particles via electromagnetic fields rather than idealised optical lattice parameters. The transfer line to the ALPHA experiment is simulated in this approach. Due to the presence of fringe fields disagreement is found between the two models. Using an error minimisation technique, revised quadrupole strengths are found which improve agreement by 30% without any manual adjustment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK032  
About • Received ※ 06 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT033 Performance Characterisation at Daresbury Laboratory of Cs-Te Photocathodes Grown at CERN 2653
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Benjamin, H.M. Churn, L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin
    University of Warwick, Coventry, United Kingdom
  • E. Chevallay, V.N. Fedosseev, E. Granados, M. Himmerlich, H. Panuganti
    CERN, Meyrin, Switzerland
  • L.B. Jones, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high-performance photocathodes is a priority in the field of particle accelerators. The surface characteristics of a photocathode affect many important factors of the photoemission process including the photoemission threshold, the intrinsic emittance and the quantum efficiency. These factors in turn define the electron beam quality, which is measurable using figures of merit like beam emittance, brightness and energy spread. We present characterisation measurements for four caesium telluride photocathodes synthesized at CERN. The photocathodes were transported under ultra-high vacuum (UHV) and analysed at STFC Daresbury Laboratory, using ASTeC’s Multiprobe (SAPI)* for surface characterisation via XPS and STM, and for Mean Transverse Energy (MTE) measurements using the Transverse Energy Spread Spectrometer (TESS)**. The MTE measurements were estimated at cryogenic and room temperatures based on the respective transverse energy distribution curves. We discuss correlations found between the synthesis parameters, and the measured surface characteristics and MTE values.
*B.L. Militsyn, 4-th EuCARD2 WP12.5 meeting, Warsaw, 14-15 March 2017
**L.B. Jones et al., Proc. FEL ’13, TUPPS033, 290-293; https://accelconf.web.cern.ch/FEL2013/papers/tupso33.pdf
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT033  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT034 Controlled Degradation of a Ag Photocathode by Exposure to Multiple Gases 2657
 
  • L.A.J. Soomary, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • L.B. Jones, T.C.Q. Noakes, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L.B. Jones, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC Doctoral Training Studentship
The search for high performance photocathode electron sources is a priority in the accelerator science community. The surface characteristics of a photocathode define many important factors of the photoemission process including the work function, the intrinsic emittance and the quantum efficiency of the photocathode. These factors in turn define the ultimate electron beam quality, which is measurable as normalised emittance, brightness and energy spread. Strategies for improving these parameters vary, but understanding and influencing the relevant cathode surface physics which underpin these attributes is a primary focus for the community*. We present performance data under illumination at 266 nm for Ag (100) single-crystal cathode and a Ag polycrystalline cathode after progressive exposure to O2, CO2, CO and N2 using our TESS** instrument both at room and cryogenic temperatures. Crucially the data shows the effect of progressive degradation*** in the photocathode performance as a consequence of exposure to controlled levels of O2 and that exposing an oxidized Ag surface to CO can drive partial QE recovery.
*K.L. Jensen; Appl. Phys. Lett. 89, 224103 (2006);
**L.B. Jones et al.; Proc. FEL ’13, TUPPS033, 290-293;
***N. Chanlek et al.; J. Phys. D: Appl. Phys. (2014) 47, 055110;
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT034  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS032 Advances in the Optimization of Medical Accelerators 3030
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No 675265.
Between 2016 and 2020, 15 Fellows have carried out collaborative research within the 4 M€ Optimization of Medical Accelerators (OMA) EU-funded innovative train-ing network. Based at universities, research and clinical facilities, as well as industry partners in several European countries, the Fellows have successfully developed a range of beam and patient imaging techniques, improved biological and physical models in Monte Carlo codes, and also helped improve the design of existing and future clinical facilities. This contribution presents three selected OMA research highlights: the use of Medipix3 for dosimetry and real-time beam monitoring, studies into the technical challenges for FLASH proton therapy, recognized by the European Journal of Medical Physics’ 2021 Galileo Gali-lei Award, and research into novel monitors for in-vivo dosimetry that emerged on the back of the OMA network.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS032  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS033 Design and Optimisation of a Stationary Chest Tomosynthesis System with Multiple Flat Panel Field Emitter Arrays: Monte Carlo Simulations and Computer Aided Designs 3034
 
  • T.G. Primidis, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • T.G. Primidis, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T.G. Primidis
    King’s College London, London, United Kingdom
  • V. Soloviev, S.G. Wells
    Adaptix Ltd, Oxford, United Kingdom
 
  Funding: Funded by the Accelerators for Security, Healthcare and Environment Centre for Doctoral Training of the United Kingdom Research and Innovation, Science and Technology Facilities Council, ST/R002142/1
Digital tomosynthesis (DT) allows 3D imaging by using a ~30° range of projections instead of a full circle as in computed tomography (CT). Patient doses can be ~10 times lower than CT and similar to 2D radiography but diagnostic ability is significantly better than 2D radiography and can approach that of CT. Moreover, cold-cathode field emission technology allows the integration of 10s of X-ray sources into source arrays that are smaller and lighter than conventional X-ray tubes. The distributed source positions avoid the need for source movements and Adaptix Ltd has demonstrated stationary 3D imaging with this technology in dentistry, orthopaedics, veterinary medicine and non-destructive testing. In this work we present Monte Carlo simulations of an upgrade to the Adaptix technology to specifications suited for chest DT and we show computer aided designs for a system with various populations of these source arrays. We conclude that stationary arrays of cold-cathode X-ray sources could replace movable X-ray tubes for 3D imaging and different arrangements of many such arrays could be used to tailor the X-ray fields to different patient size and diagnostic objective.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS033  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT063 Reconstruction of Beam Parameters from Betatron Radiation Using Maximum Likelihood Estimation and Machine Learning 407
 
  • S. Zhang, G. Andonian, C.E. Hansel, P. Manwani, B. Naranjo, M.H. Oruganti, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • Ö. Apsimon, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: US Department of Energy, Division of High Energy Physics, Contract No. DE-SC0009914 STFC Liver-pool Centre for Doctoral Training on Data Intensive Science, grant agreement ST/P006752/1
Betatron radiation that arises during plasma wakefield acceleration can be measured by a UCLA-built Compton spectrometer, which records the energy and angular position of incoming photons. Because information about the properties of the beam is encoded in the betatron radiation, measurements of the radiation can be used to reconstruct beam parameters. One method of extracting information about beam parameters from measurements of radiation is maximum likelihood estimation (MLE), a statistical technique which is used to determine unknown parameters from a distribution of observed data. In addition, machine learning methods, which are increasingly being implemented for different fields of beam diagnostics, can also be applied. We assess the ability of both MLE and other machine learning methods to accurately extract beam parameters from measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT063  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT066 Gas Sheet Diagnostics Using Particle in Cell Code 410
 
  • M. Yadav, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • G. Andonian
    RadiaBeam, Santa Monica, California, USA
  • Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • N.M. Cook, A. Diaw, C.C. Hall
    RadiaSoft LLC, Boulder, Colorado, USA
  • N.P. Norvell
    UCSC, Santa Cruz, California, USA
 
  Funding: This work was supported by the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1 and DE-SC0019717.
When intense particle beam propagates in dense plasma or gas, ionization can yield valuable information on the drive beam properties. Impact ionization and tunnel ionization are the two ionization regimes that must be accounted for varying beam properties. Due to these ionization mechanisms, new plasma electrons are generated causing different instabilities, dependent on the dominant ionization process considered. In order to accomplish the ambitious experimental goals of sophisticated beam diagnostics using ionization imaging, careful studies on the different ionization regimes, and the cross-over periods, required. Here we will discuss the impact ionization using fully parallel PIC code OSIRIS. We focus on understanding the gas sheet ionization diagnostics for characterizing high intensity charged particle beams. We study the interaction of neutral gas with an electron beam and varying density. We will also investigate the principle of detecting photon emission, rather than direct primary ion imaging, from the ionization induced in the interaction between the gas jet and charged particle beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT066  
About • Received ※ 07 June 2022 — Revised ※ 19 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST041 Physical Aspects of Collinear Laser Injection at SLAC FACET-II E-310: Trojan Horse Experiment 1787
 
  • M. Yadav, Ö. Apsimon, E. Kukstas, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.E. Hansel, P. Manwani, B. Naranjo, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
  • B. Hidding
    USTRAT/SUPA, Glasgow, United Kingdom
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, un-der Contract No. DE-SC0009914, and the STFC grant ST/P006752/1.
The Facility for Advanced Accelerator Experimental Tests (FACET-II) is a test accelerator infrastructure at SLAC dedicated to the research and development of advanced accelerator technologies. We performed simulations of electron beam driven wakefields, with collinear lasers used for ionization injection of electrons. We numerically generated a witness beam using the OSIRIS code in an up ramp plasma as well as uniform plasma regimes. We report on challenges and details of the E-310 experiment which aims to demonstrate this plasma photocathode injection at FACET-II. We examine the phenomena beam hosing and drive beam depletion. Details of the witness beam generated are discussed. Computation of betatron-radiation X-ray spatial distribution and critical energy are done for FACET-II low emittance beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST041  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST042 Radiation Diagnostics for AWA and FACET-II Flat Beams in Plasma 1791
 
  • M. Yadav, Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • H.S. Ancelin, G. Andonian, P. Manwani, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, under Contract No. DE-SC0009914, DE-SC0017648 - AWA and STFC grant ST/P006752/1 ,
In energy beam facilities like FACET and AWA, beams with highly asymmetric emittance are of interest because they are the preferred type of beam for linear colliders. That is ultimately the motivation: building a plasma based LC. In this case, the blowout region is no longer symmetric around an axis is not equal in the two transverse planes. Focusing is required to keep the particles within the tight apertures and characterizing these accelerators shows the benefits of employing ultra low beam emittances. Beams with high charge and high emittance ratios in excess of 100:1 are available at AWA. If the focusing will not be equal, then we will have different radiation signatures for the flat and symmetric beams in plasma. We use OSIRIS particle-in-cell codes to compare various scenarios including a weak blowout and a strong blowout. Further, we determine the radiation generated in the system by importing particle trajectories into a Liénard Weichert code. We discuss future steps towards full diagnostics of flat beams using radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST042  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST043 An Effective-Density Model for Accelerating Fields in Laser-Graphene Interactions 1795
 
  • C. Bonțoiu, Ö. Apsimon, E. Kukstas, C.P. Welsch, M. Yadav
    The University of Liverpool, Liverpool, United Kingdom
  • A. Bonatto
    Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
  • J. Resta-López
    ICMUV, Paterna, Spain
  • G.X. Xia
    UMAN, Manchester, United Kingdom
 
  Funding: This work was supported by STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT)
With the advancement of high-power UV laser technology, the use of nanostructures for particle acceleration attracts renewed interest due to its possibility of achieving TV/m accelerating gradients in solid state plasmas. Electron acceleration in ionized materials such as carbon nanotubes and graphene is currently considered as a potential alternative to the usual laser wakefield acceleration (LWFA) schemes. An evaluation of the suitability of a graphene target for LWFA can be carried out using an effective density model, thus replacing the need to model each layer. We present a 2D evaluation of the longitudinal electric field driven by a short UV laser pulse in a multi-layer graphene structure, showing that longitudinal fields of ~5 TV/m are achievable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST043  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST045 Simulating Enhanced Focusing Effects of Ion Motion in Adiabatic Plasmas 1798
 
  • D.R. Chow, C.E. Hansel, P. Manwani, J.B. Rosenzweig, M. Yadav
    UCLA, Los Angeles, California, USA
  • Ö. Apsimon, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work was performed with support of the US Department of Energy, Division of High Energy Physics, under Contract No. DE-SC0009914, and the STFC Liverpool Centre for Doctoral Training on Data Intensive Science (LIV. DAT) under grant agreement ST/P006752/1.
The FACET-II facility offers the unique opportunity to study low emittance, GeV beams and their interactions with high density plasmas in plasma wakefield acceleration (PWFA) scenarios. One of the experiments relevant to PWFA research at FACET-II is the ion collapse experiment E-314, which aims to study how ion motion in a PWFA can produce dual-focused equilibrium. As nonlinear focusing effects due to nonuniform ion distributions have not been extensively studied; we explore the difficulties of inducing ion motion in an adiabatic plasma and examines the effect an ion column has on beam focusing. A case study is performed on a system containing a plasma lens and adiabatic PWFA. Ions in the lens section are assumed to be static, while simulations of an adiabatic matching section are modified to include the effects of ion column collapse and their nonlinear focusing fields. Using the parameters of the FACET-II beam, we find that a collapsed ion column amplifies the focusing power of a plasma without compromising emittance preservation. This led to a spot size orders of magnitude less than that of a simply matched beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST045  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)