JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for THPOMS033: Design and Optimisation of a Stationary Chest Tomosynthesis System with Multiple Flat Panel Field Emitter Arrays: Monte Carlo Simulations and Computer Aided Designs

TY  - CONF
AU  - Primidis, T.G.
AU  - Soloviev, V.
AU  - Wells, S.G.
AU  - Welsch, C.P.
ED  - Zimmermann, Frank
ED  - Tanaka, Hitoshi
ED  - Sudmuang, Porntip
ED  - Klysubun, Prapong
ED  - Sunwong, Prapaiwan
ED  - Chanwattana, Thakonwat
ED  - Petit-Jean-Genaz, Christine
ED  - Schaa, Volker R.W.
TI  - Design and Optimisation of a Stationary Chest Tomosynthesis System with Multiple Flat Panel Field Emitter Arrays: Monte Carlo Simulations and Computer Aided Designs
J2  - Proc. of IPAC2022, Bangkok, Thailand, 12-17 June 2022
CY  - Bangkok, Thailand
T2  - International Particle Accelerator Conference
T3  - 13
LA  - english
AB  - Digital tomosynthesis (DT) allows 3D imaging by using a ~30° range of projections instead of a full circle as in computed tomography (CT). Patient doses can be ~10 times lower than CT and similar to 2D radiography but diagnostic ability is significantly better than 2D radiography and can approach that of CT. Moreover, cold-cathode field emission technology allows the integration of 10s of X-ray sources into source arrays that are smaller and lighter than conventional X-ray tubes. The distributed source positions avoid the need for source movements and Adaptix Ltd has demonstrated stationary 3D imaging with this technology in dentistry, orthopaedics, veterinary medicine and non-destructive testing. In this work we present Monte Carlo simulations of an upgrade to the Adaptix technology to specifications suited for chest DT and we show computer aided designs for a system with various populations of these source arrays. We conclude that stationary arrays of cold-cathode X-ray sources could replace movable X-ray tubes for 3D imaging and different arrangements of many such arrays could be used to tailor the X-ray fields to different patient size and diagnostic objective.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 3034
EP  - 3037
KW  - photon
KW  - simulation
KW  - target
KW  - electron
KW  - diagnostics
DA  - 2022/07
PY  - 2022
SN  - 2673-5490
SN  - 978-3-95450-227-1
DO  - doi:10.18429/JACoW-IPAC2022-THPOMS033
UR  - https://jacow.org/ipac2022/papers/thpoms033.pdf
ER  -