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Abstract
Betatron radiation that arises during plasma wakefield

acceleration can be measured by a UCLA-built Compton
spectrometer, which records the energy and angular posi-
tion of incoming photons. Because information about the
properties of the beam is encoded in the betatron radiation,
measurements of the radiation can be used to reconstruct
beam parameters. One method of extracting information
about beam parameters from measurements of radiation is
maximum likelihood estimation (MLE), a statistical tech-
nique which is used to determine unknown parameters from
a distribution of observed data. In addition, machine learn-
ing methods, which are increasingly being implemented for
different fields of beam diagnostics, can also be applied. We
assess the ability of both MLE and other machine learn-
ing methods to accurately extract beam parameters from
measurements.

INTRODUCTION
In plasma wakefield acceleration, a dense drive beam

generates a linear focusing force by repelling the plasma
electrons away from its path while leaving the much heavier
plasma ions uniformly distributed. Subject to this focusing
force in plasma frequency 𝑘𝛽 , electrons inside the witness
beam then undergo harmonic transverse betatron oscillations,
giving rise to betatron radiation. Because information about
the properties of the beam is encoded in betatron radiation,
measurements of this radiation can be used to reconstruct
beam parameters, allowing devices which record informa-
tion about betatron radiation, such as the UCLA-built Comp-
ton spectrometer, to be used for beam diagnostics. A variety
of beam diagnostic devices and techniques already exist,
such as the beam current transformer, used to measure beam
intensity and charge, and LASER-Compton scattering, used
to measure beam emittance and spot size[1]. Machine learn-
ing (ML) methods are also implemented for different fields
of beam [2]. For example, the application of convolutional
neural networks at FAST is able to produce a prediction
for various downstream beam parameters from simulated
datasets[3], and ML may also have the potential to be ap-
plied to betatron radiation diagnostics. Another method of
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extracting information about beam parameters from mea-
surements of radiation is maximum likelihood estimation
(MLE), a statistical technique used to determine unknown
parameters from a given distribution of observed data. The
goal of this work is to assess the ability of both maximum
likelihood estimation and machine learning as methods for
accurately extracting a beam parameters from measurements
of betatron radiation.

MAXIMUM LIKELIHOOD ESTIMATION
The method of maximum likelihood estimation involves

some probability distribution function 𝑓 (𝑥 |𝜎), which spec-
ifies the probability of observing a data vector 𝑥 given the
parameter 𝜎. The probability distribution function is related
to a likelihood function 𝐿 (𝜎 |𝑥) by 𝐿 (𝜎 |𝑥) = 𝑓 (𝑥 |𝜎), where
𝐿 (𝜎 |𝑥) specifies the likelihood of 𝜎 given 𝑥. Given a set
of N observations of data vectors, the overall likelihood is
the product of the likelihoods for each individual data vector
[4], and the value of the parameter 𝜎 which is most likely
to have produced the set of observed data is determined by
maximizing the likelihood with respect to 𝜎. Because work-
ing with log-likelihood, rather than raw likelihood, avoids
possible problems with arithmetic underflow [5], this work
performs MLE with the log-likelihood, which is given by

ln 𝐿 (𝜎 |𝑥1, 𝑥2, ..., 𝑥𝑁 ) =
𝑁∑︁
𝑛=1

ln 𝐿 (𝜎 |𝑥𝑛), (1)

where the product of likelihoods has been converted into a
sum of log-likelihoods.

BEAM PARAMETER RECONSTRUCTION
USING MLE

The first task tackled by this work was to correctly identify
a beam’s spot size from its radiation spectrum using MLE.
The process described here is easily applied to other beam
parameter reconstruction tasks.

First, several simulations of betatron radiation from beam
particles in a plasma wakefield accelerator were run for
beams of different spot sizes. The results of these simu-
lations, plotted as 1D energy spectra, are shown in Fig. 1.
This work uses a simulation in which particles are sampled
from a beam and tracked through idealized fields. Beta-
tron radiation was computed for a single particle using Lié-
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Figure 1: Radiation spectra for several spot sizes.

Figure 2: The log-likelihood function 𝑙𝑛𝐿 (𝜎 |𝑥) reaches a
maximum at the test spot size, 2 µm.

nard–Wiechert potentials, and the radiation generated by the
a was computed by summing the contribution from each
particle. Some known "test" spot size was then arbitrarily
chosen, and an additional radiation spectrum was obtained
for this beam. In this example, the test spot size was chosen
to be 2 µm. Each of the 𝑑𝐼/𝑑𝑡 spectra are then converted into
a probability distribution with photon energy treated as a
discrete variable, together forming a probability distribution
function 𝑓 (𝑥 |𝜎), where x is photon energy and 𝜎 is spot
size. In authentic MLE, the test spectrum’s y-axis should be
in terms of a concrete number of objects (i.e. photons), but,
because it does not affect MLE results, this work also con-
verts the test spectrum to a probability distribution 𝑓test (𝑥)
for ease of comparison. Now, the likelihood that the proba-
bility distribution 𝑓 (𝑦 |𝜎) models the test spectrum 𝑓test (𝑥)
for different values of 𝜎, can then be calculated by Eq. (1).
That is, for an test spectrum of discrete photon energies
𝑥1, 𝑥2, ..., 𝑥𝑁 ,

ln 𝐿 (𝜎 |𝑥1, 𝑥2, ..., 𝑥𝑁 ) =
𝐽∑︁
𝑗=1

𝑓test (𝑥 𝑗 ) ln 𝑓 (𝑥 𝑗 |𝜎). (2)

Figure 2 shows the log-likelihood function plotted and
correctly identifying the test spot size of 2 µm.

Furthermore, this same MLE model can also be expanded
to analyze data for two-dimensional distributions, such as

Figure 3: Two types of two-dimensional distributions plotted
from same radiation data. Top: Double Differential Spec-
trum. Bottom: Angular Spectrum.

Figure 4: Comparing likelihood plots for the MLE algorithm
using three different formulations of the radiation data, all
correctly identifying an test spot size of 1 µm.

double differential spectrum distributions and angular spec-
trum distributions, shown in Fig. 3. For 2D distributions, the
MLE algorithm works very much in the same way, with the
expression in Eq. (2) being summed over all points (now or-
dered pairs) in the distribution. The results of MLE using the
2D distributions, displayed in Fig. 4, show that all methods
are able to correctly identify the test spot size of 1 µm. This
makes the 1D radiation spectrum a more attractive choice
for use with the MLE algorithm (as well with machine learn-
ing) because it delivers similarly reliable results with less
computation.
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Figure 5: Overall spot size prediction results for 1D radiation
spectrum MLE with 310 sets of reference data and 120 test
cases.

In addition to being expanded to different plot types, the
MLE algorithm can also be expanded to identify different
beam parameters. The results present in Fig. 4 were able to
be analogously replicated to identify beam energy, emittance
and beam charge by simply repeating the above methods and
replacing spot size with the appropriate parameter.

While the results in Fig. 4 show success of the MLE algo-
rithm at a basic level, more precise and accurate results can
also be achieved with the same methods. To show this, a total
of 310 training simulations and 210 "test" simulations were
run, each with a spot size chosen randomly from a uniform
distribution between the values 0.1 µm and 9.0 µm. The over-
all results of using the 310 initial simulations to predict the
spot sizes of all 120 "test" simulations by performing MLE
with their 1D radiation spectrum data is displayed in Fig. 5,
where the "expected" line represents perfect predictions. At
a mean-squared error (MSE) of 0.186 µm2, the prediction
results appear relatively accurate, except in the region below
1 µm, where a few predictions are significantly greater than
the actual spot sizes.

BEAM PARAMETER RECONSTRUCTION
USING MACHINE LEARNING

While the MLE method of beam parameter reconstruction
was able to identify several beam parameters from different
types of betatron radiation data at a basic level, this method
is limited in its prediction ability because it cannot predict
parameter values not included in the values for which simu-
lation data is already provided. Therefore, machine learning
is also explored as another method of extracting beam pa-
rameters from betatron radiation data.

We began again by attempting to build a model to predict
spot size. Radiation data in the form of the 1D spectra was
used to train and test a fully connected neural network with
no bias and ReLU activations. Simulations were run to
generate 310 training data sets and 120 test cases data for
different spot sizes ranging from 0.1 µm to 9.0 µm in the
form of both 1D energy spectra.

Figure 6: Spot size prediction results for 1D radiation spec-
trum ML with 400 sets of training data and 120 test cases.
There is a clear inaccurate "tail" in the data at low spot sizes.

The results for ML predictions displayed in Fig. 6, show
a "tail" below ∼1 µm, where the predictions all tend to be
higher than the actual spot size values. The persistence of
this problem between the MLE and ML methods suggests
either that the simulation has difficulty resolving differences
between the spectra of beams with extremely small spot sizes
or that neither method is sensitive enough to differences in
the spectra at low spot sizes. However, the predictions of the
spot sizes appear otherwise reasonably accurate for Fig. 6,
with a MSE of 0.2638.

CONCLUSION
This work demonstrates that both MLE and ML can both

effectively use betatron radiation data in order to wield beta-
tron radiation as a tool for beam diagnostics, specifically in
order to identify beam spot size, emittance, charge, and en-
ergy. While spot size is the most thoroughly tested of these
parameters, both ML and MLE have difficulty accurately
identifying small beam spot sizes.

REFERENCES
[1] H. Koziol, “Beam diagnostics for accelerators,” CERN, Tech.

Rep., 2001.

[2] E. Fol et al., “Application of Machine Learning to Beam
Diagnostics,” in Proc. FEL’19, 2019, pp. 311–317, doi:10.
18429/JACoW-FEL2019-WEB03

[3] A. L. Edelen et al., “First Steps Toward Incorporating Im-
age Based Diagnostics into Particle Accelerator Control Sys-
tems Using Convolutional Neural Networks,” in Proc. NA-
PAC’16, Chicago, IL, USA, 2017, pp. 390–393, doi:10.
18429/JACoW-NAPAC2016-TUPOA51

[4] I. J. Myung, “Tutorial on maximum likelihood estimation,”
Journal of Mathematical Psychology, vol. 47, pp. 90–93, 2003.

[5] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006, ch. 1.2.4 – The Gaussian distribution, https:
//www.academia.edu/37931561/Bishop_Pattern_
Recognition_And_Machine_Learning_Springer

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOPT063

MC6: Beam Instrumentation, Controls, Feedback and Operational Aspects

T03: Beam Diagnostics and Instrumentation

MOPOPT063

409

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I


