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Abstract
Local interaction region (IR) linear coupling in the LHC

has been shown to have a negative impact on beam size
and luminosity, making its accurate correction for Run 3
and beyond a necessity. In view of determining corrections,
supervised machine learning has been applied to the detec-
tion of linear coupling sources, showing promising results
in simulations. An evaluation of different applied models
is given, followed by the presentation of further possible
application concepts for linear coupling corrections using
machine learning.

INTRODUCTION
Machine learning techniques have found their application

in a wide range of particle accelerator control tasks in the
past [1–7]. The precise knowledge of a coupling source’s
location and relative strength is valuable for further correc-
tion. While one can look at sudden jumps in the coupling
Resonance Driving Terms (RDTs) 𝑓1001 and 𝑓1010 to deduce
the presence of sources in between BPMs, such a method
does not accurately pinpoint the location of a source, nor
can it be used in locations with little instrumentation or unfa-
vorable conditions. In the LHC, this approach is applicable
for any source located in the arcs, but due to unfavorable
phase advances between Beam Position Monitors (BPMs)
in the Insertion Regions (IRs) and the necessity to have no
strong sources between measuring BPMs, it is inappropriate
for the detection of sources located within these regions. In
this work, we explore the possibility of using supervised
machine learning to detect betatron coupling sources in the
LHC IRs.

SUPERVISED LEARNING FOR IR
COUPLING SOURCES DETECTION

In order to perform a prediction of betatron coupling
sources’ locations, one first needs to compute the 𝑓1001 and
𝑓1010 RDTs. The strength and variations of the coupling
RDTs throughout the machine is then used to estimate the
location of coupling sources.

In terms of machine learning, this task can be defined as
a regression problem that can be solved by training a model
using measurements and corresponding solutions. Such a
regression model requires a large data set in order to be able
to generalize and produce reliable results. As from the real
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machine the location of sources is unknown, no real-world
data is available for the training of machine learning models.

Data Set Generation
In order to create a training set, simulations are performed

where random rotations around the s-axis are introduced into
the MAD-X [8] quadrupoles, generating a skew quadrupo-
lar component at the affected element and thus a source of
coupling. It has to be noted though, that in the simulation
of the training set we use tilt components to quadrupoles,
given by the DPSI variable in MAD-X, which ignores the
other potential sources such as feed-down from higher or-
der magnets. While simulating the data, the introduced
tilt components (DPSI values) are the input of the simula-
tions and the produced coupling RDTs generated from the
perturbed optics functions are the output. The data was
generated for Beam 1 and 2 of the LHC, for the 2018 op-
tics settings with 𝛽∗ = 30 cm and using collision tunes
(𝑄𝑥 = 0.31, 𝑄𝑦 = 0.32). Figure 1 shows the reconstructed
coupling RDTs for a given sample, calculated through the C
matrix [9].
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Figure 1: Coupling RDTs reconstructed for the LHC Beam
1 (top) and 2 (bottom) from the optics perturbed by the
introduction of tilt errors to IR quadrupoles. Here a truncated
Gaussian distribution with a standard deviation of 1 mrad
was applied.
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The measurements are simulated with the MAD-X code,
and each simulated sample is done by applying the following
steps:

1. A truncated Gaussian distribution of tilt errors (DPSI)
is applied to IR[1258] quadrupoles on Beam 1.

2. Quadrupoles located outside of the IRs are excluded as
these sources can be well corrected by other means.

3. The coupling RDTs 𝑓1001 and 𝑓1010 are calculated at
each BPM from TWISS functions for Beam 1.

4. The DPSI values for triplets are exported and applied
to Beam 2 as these are common magnets.

5. A truncated Gaussian distribution is applied to the re-
maining IR[1258] quadrupoles in Beam 2.

6. Coupling RDTs for Beam 2 are calculated as done for
Beam 1 and those two results are concatenated.

The standard deviation of the applied tilt errors was
aligned with expected values from the element alignment
precision in the LHC, after discussions with the alignment
group.
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Figure 2: Standard deviation of the coupling RDTs at BPMs
for Beam 1, from a batch of measurements taken on April 3,
2018. These data points were later divided into IR BPMs
and arc BPMs to determine applied noise levels.

To train the model we flip this relation such that the intro-
duced tilt errors have to be found based on given coupling
RDTs computed from the perturbed optics. Therefore, the
coupling RDTs reconstructed at each BPM are considered
as model input (features). A vector containing the estimated
DPSI value attributed to each affected quadrupole is the de-
sired output of the trained model. A simulation data set of
50 000 samples was divided into train and test sets (75% and

25% respectively). Each sample pair consists in 4424 inputs
(real and imaginary parts of each coupling RDT for each
BPM for each beam) and 160 outputs (DPSI value at each
affected IR quadrupole).

Training and Model Evaluation
Various scoring techniques exist in the domain of model

evaluation. In this study, models have been evaluated based
on their 𝑅2 scores (coefficient of determination) as well as
the normalized mean absolute error between the true values
and the model outputs. Both train and test sets were submit-
ted to the addition of Gaussian noise on the reconstructed
RDTs to simulate the uncertainty of the reconstructed RDTs.
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Figure 3: Normalized mean absolute error (top) and 𝑅2

scores (bottom) of a Ridge model on various noised data
sets. The 𝜎 values indicated correspond to the standard
deviation of the Gaussian noise distributions added to the
coupling RDTs data. Each curve represents a noise level
applied to arc BPMs data, while each point on these curves
corresponds to a noise level applied to the inner BPMs.

The standard deviation of the added noise was determined
by a statistical analysis of several measurements from the
LHC Run 2. Figure 2 shows the standard deviation of cou-
pling RDTs across Beam 1 BPMs for a batch of measure-
ments taken on April 3, 2018. After analyzing several such
batches, the following noise levels were determined:

• Coupling RDTs at arc BPMs were noised with standard
deviation ranging from 0 to 10−5 absolute error.

• Inner BPMs (number 1 to 6 from IP) were noised with
standard deviation ranging from 0 to 10−2.

A new data set was created for each combination of the
noise levels mentioned above. Figure 3 shows the test perfor-
mance of a Ridge Regression model [10] on noised data sets
depending on the level of noise added to different BPMs,
where the impact of noising the reconstructed coupling RDTs
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is noticeable. Here the Mean Absolute Error (MAE) - the
sum of absolute errors divided by the sample size - was
normalized to the standard deviation of the applied tilts,
𝜎DPSI = 10−4 rad.

RESULTS
Several models suited for regression tasks were tested, and

a minimal amount of hyper-parameter tuning was performed.
A simple least squares linear regression [11] showed very
good results on clean data, however the introduction of noise
in the data sets made its performance drop drastically, down
to unusable accuracy. A decision tree regressor [12] and a
random forest regressor [13]showed poor performance on
all data sets. A Ridge regressor model, a linear regressor
with l2 regularization, showcased good performance on both
clean and relatively low-noised data sets.

Results showing the best 𝑅2 scores obtained by each
model on both clean and noised test data sets, averaged over
1000 simulations, are presented in Table 1 where the Ridge
regressor clearly outperforms its counterparts. In this table,
the standard deviations of the applied noise were 𝜎 = 10−4

for IR BPMs and 𝜎 = 10−5 for arc BPMs.

Table 1: 𝑅2 Scores of Different Tested Models

Model Clean Data Noised Data
Ridge Regressor 0.9911 0.8934

Linear Regression 0.9913 0.5638
Decision Tree Regressor 0.1385 -0.0018
Random Forest Regressor 0.0175 -0.0009

Figure 4 shows the Ridge model’s predictions on a sam-
ple from the same noised data set, where a good agreement
between predicted and assigned values can be observed. Per-
formance significantly degrades with the addition of noise.
Figure 5 shows the predictions and deviations of the Ridge
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Figure 4: Assigned and predicted values DPSI with a Ridge
model. Here the magnet names have been switched for
numbers in order to improve the plot’s clarity.

model on a noised data set (𝜎DPSI,IRs = 𝜎Arcs,IRs = 10−5,
where one can notice the deviations significantly lower that
the attributed errors.
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Figure 5: Histograms of the true applied DPSI values, the
values predicted by the Ridge model, and the deviations
from the predictions to the true values.

FUTURE PROSPECTS
Assigning more computing resources to the determination

of model parameters through hyper-parameter tuning is a
first step towards improving model performance, but will not
circumvent certain models’ shortcomings. Another avenue
of improvements would be to create a pipeline where first a
denoising step is applied on the coupling RDTs data using
an auto-encoder neural network [14] before feeding the re-
sults to the above prediction models. Convolutional Neural
Networks (CNNs) have in the past been successfully used
with impressive success on regression tasks - such as in high
energy physics [15] and recently in optics measurements
studies [16] - and would be a promising tool that could yield
better prediction accuracy. These could give the potential
to also include measurements with different machine con-
figurations breaking the degeneracy of the IRs, providing
additional insights on the local errors.

CONCLUSIONS
We have shown that specific machine learning models are

capable of predicting the IR quadrupole tilts in the LHC by
assigning a representative value to specific magnets, some
even when faced with noised data sets. A Ridge regressor
shows the best performance among the tested models, includ-
ing data sets with small amounts of noise. While usability
in operation would require better accuracy on data sets with
higher noise, this is an important first step towards the ap-
plication of ML techniques to local coupling corrections in
particle accelerators. Potential improvements such as using
previously successful but more complex models and work-
flows have been identified which could allow to improve the
performance of models discussed in this study.
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