MC5: Beam Dynamics and EM Fields
D10 Beam-Beam Effects - Theory, Simulations, Measurements, Code Developments
Paper Title Page
MOPAB274 Two-Stream Effects in Coherent Beam-Beam Oscillations in VEPP-2000 Collider Near the Linear Coupling Resonance 866
 
  • S.A. Kladov, E. Perevedentsev
    BINP SB RAS, Novosibirsk, Russia
  • S.A. Kladov, E. Perevedentsev
    NSU, Novosibirsk, Russia
 
  Synchro-betatron motion of colliding bunches may cause limitations of the high-luminosity performance. For a round beam collider operated near the linear coupling resonance, we present theoretical predictions of the beam-beam coherent synchro-betatron oscillation behavior under the influence of x-y coupling.  
poster icon Poster MOPAB274 [0.968 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB274  
About • paper received ※ 19 May 2021       paper accepted ※ 02 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUXA05 Measurements of Beam-Beam Interactions in Gear-Changing Collisions in DESIREE 1283
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
  • A. Källberg, A. Simonsson
    Stockholm University, Stockholm, Sweden
 
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a license to publish or reproduce this manuscript.
In this work, we perform measurements on the interactions of colliding beams in a gear-changing system. Gear-changing was first demonstrated in DESIREE in May of 2020 and showed several promising avenues to measure beam-beam effects. DESIREE has a unique collision scheme where the beams are moving in the same direction, which provides for unique interactions. This experiment used a 4 on 3 gear changing system with one bucket in each ring left empty, this allows us to see the bunch profile while undergoing collisions. We then measured the bunch length over time and used a Fourier transform to extract longitudinal evolution data and compared it to baseline data of uncollided beams.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUXA05  
About • paper received ※ 21 May 2021       paper accepted ※ 14 June 2021       issue date ※ 26 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB252 Transient Beam-Beam Effect During Electron Bunch Replacement in the EIC 3228
 
  • J. Qiang
    LBNL, Berkeley, California, USA
  • M. Blaskiewicz, Y. Luo, C. Montag, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  The high luminosity, high polarization electron-ion collider (EIC) will provide great opportunities in nuclear physics study. In order to maintain high polarization, the electron beam will be replaced every few minutes during the collider operation. This frequent replacement of electron beams can affect proton beam quality during the collision. In this paper, we report on the study of the transient effect of electron beam replacement on proton beam emittance growth through strong-strong beam-beam simulation. The effect of electron beam injection imperfection will be included in the study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB252  
About • paper received ※ 17 May 2021       paper accepted ※ 21 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB278 Beam-Beam Simulations for Lepton-Hadron Colliders: ALOHEP Software 3293
 
  • B.B. Oner
    Gazi University, Faculty of Arts and Sciences, Teknikokullar, Ankara, Turkey
  • B. Dagli, S. Sultansoy
    TOBB ETU, Ankara, Turkey
  • B. Ketenoğlu
    Ankara University, Faculty of Engineering, Tandogan, Ankara, Turkey
 
  It is known that rough luminosity estimations for ll, lh, and hh colliders can be performed easily using nominal beam parameters. In principle, more precise results can be obtained by analytical solutions. However, beam dynamics is usually neglected in this case since it is almost impossible to cope with beam size fluctuations. In this respect, several beam-beam simulation programs for linear e+e and photon colliders have been proposed while no similar open-access simulation exists for all types of colliders (i.e. linac-ring ep colliders). Here, we present the software ALOHEP (A Luminosity Optimizer for High Energy Physics), a luminosity calculator for linac-ring and ring-ring lh colliders, which also computes IP parameters such as beam-beam tune shift, disruption arising out of electromagnetic interactions. In addition, the program allows taking crossing-angle effects on luminosity into account.
* Y.C. Acar et al., Nucl. Instrum. Meth. A, 871 (2017).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB278  
About • paper received ※ 19 May 2021       paper accepted ※ 26 July 2021       issue date ※ 27 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB279 On Wire-Corrector Optimization in the HL-LHC and the Appearance of Special Aspect Ratios 3297
 
  • D. Kaltchev
    TRIUMF, Vancouver, Canada
 
  For the two high-luminosity insertions of the Large Hadron Collider (HL-LHC) current bearing wire correctors are intended to mitigate the detrimental effect of long-range beam-beam interactions. With respect to finding the optimum longitudinal location of the wire, two special locations corresponding to the special values 2 and 1/2 of the beta-function aspect ratio have been previously shown to provide simultaneous cancellation of multiple two-dimensional Resonance Driving Terms. This paper attempts to explain the appearance of such special aspect ratios.  
poster icon Poster WEPAB279 [1.238 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB279  
About • paper received ※ 14 May 2021       paper accepted ※ 19 July 2021       issue date ※ 13 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB280 Two-Dimensional Beam-Beam Invariant with Applications to HL-LHC 3301
 
  • D. Kaltchev
    TRIUMF, Vancouver, Canada
 
  Long-range beam-beam interactions represent the most severe limitation on the performance and achievable luminosity of circular collider. The paper presents a two-dimensional nonlinear Courant Snyder Invariant derived to first order in the beam-beam perturbation and based on the two-dimensional coefficients in the Fourier expansion of the Beam-beam Hamiltonian. Its validity in case of HL-LHC lattices with realistic beam-beam setup is verified with MadX tracking.  
poster icon Poster WEPAB280 [1.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB280  
About • paper received ※ 14 May 2021       paper accepted ※ 06 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB119 Many-Objective Beam Dynamics Optimization for High-Repetition-Rate XFEL Photoinjector 3991
 
  • Z.H. Zhu, J.W. Yan
    SINAP, Shanghai, People’s Republic of China
  • D. Gu
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Q. Gu
    Shanghai Advanced Research Institute, Pudong, Shanghai, People’s Republic of China
 
  SHINE, as the first hard x-ray free-electron-laser (FEL) facility in China, is design to provide high-brightness FEL lasing under high-repetition-rate operation. In order to drive x-ray FEL pulses with high qualities, the photoinjector section is deployed to provide the specified electron beam with low transverse emittance and high brightness. Normally the multi-objective optimization algorithm is employed in the injector beam dynamics design. In this paper, the many-objective optimization algorithm NSGA-III is introduced to the injector physical design for optimizing the 4 detailed beam quality properties using 17 variables for the first time. The results of the optimization are presented and the correlations are analyzed. This approach can provide guidance for further physical research as well as improve the beam dynamics optimization efficiency.  
poster icon Poster THPAB119 [0.936 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB119  
About • paper received ※ 17 May 2021       paper accepted ※ 07 July 2021       issue date ※ 22 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)