TWO-DIMENSIONAL BEAM-BEAM INVARIANT WITH APPLICATIONS TO HL-LHC

D. Kaltchev, TRIUMF, Vancouver, B.C., Canada

Abstract

Long-range beam-beam interactions represent the most severe limitation on the performance and achievable luminosity of a circular collider. The paper presents a twodimensional nonlinear Courant-Snyder Invariant derived to first order in the beam-beam perturbation and based on the two-dimensional coefficients in the Fourier expansion of the Beam-beam Hamiltonian. Its validity in case of HLLHC lattices with realistic beam-beam setup is verified with MadX tracking.

INTRODUCTION

Within the weak-strong model with neglected bunchlength effects, the total effect on the transverse motion of the weak-beam (or test) particle of the many long-range beambeam (lr) collisions that it encounters with the strong-beam bunch is usually studied by tracking, either for $\sim 10^{3}$ turns (geometric distortions of the ellipse and footprint), or for a very long term (dynamic aperture). For the lr occurring within the two main Interaction Regions of the LHC: IR5 and IR1, geometric aberrations can also be studied with Liealgebraic methods. Previously, the case of 1D motion (in the plane of collision) was treated $-[1-3]$, based on, and gradually developing, the original single-head-on formalism of A. Dragt, $[4,5]$ and A. Chao, [6]. By computing the effective Hamiltonian $h\left(J_{x}, \phi_{x}\right)$, the surfaces of constant h-value in action-angle J_{x}, ϕ_{x} space were found to agree well with tracking: far from resonances, the turn-by-turn test-particle actions lay on the curve $W_{x}=h / \mu_{x}=$ const (more simply, one can compare the r.m.s. distortion of the surfaces, aka smear).

We present a formula for the geometric distortion of the two-dimensional nonlinear (Courant Snyder) invariant valid to lowest order of the beam-beam parameter λ. The n-th collision ($n=1, . ., N_{\mathrm{lr}}$), is described by the coefficients $C_{m k}\left(a_{x}, a_{y} ; \theta_{\mathrm{str}}^{(n)}\right)$ in the Fourier-expansion of the long-range beam-beam Hamiltonian, written in terms of action-angle coordinates $\vec{J}, \vec{\phi}$ of the unperturbed motion: $H\left(\vec{a}, \vec{\phi} ; \theta_{\mathrm{str}}^{(n)}\right)$. Here m, k are integers, $N_{l \mathrm{r}}$ is the total number of lr around the ring, $\vec{a}=\left(a_{x}, a_{y}\right)$, where $a_{x, y} \equiv \sqrt{2 J_{x, y} / \epsilon}$, are the test particle normalized amplitudes, ϵ is the emittance and $\theta_{\text {str }}^{(n)}$ are the strong-beam lattice parameters at the (longitudinal) location of the beam-beam collision.

The two-dimensional $C_{m k}$ are very interesting by themselves, since they participate in resonance driving terms which may account for the long-term behaviour. In previous papers [7, 8], expressions for $C_{m k}$ were presented valid at large amplitudes and large ~ 12 normalized separations, as required by the nominal beam-beam layout and a round collision optics in the HL-LHC [9], see also [10]. It was further
shown in [7] that the amplitude detuning, or beam-beam footprint, derivatives of $C_{0,0}$, agree well with tracking. Our goal is to further verify that invariant and $C_{m k}$ are correct, focusing on 1 r collisions (k and m cannot be both zero).

2D NONLINEAR INVARIANT FOR BEAM-BEAM

This section outlines the procedure that builds the CSinvariants $W_{x, y}$ using an effective Hamiltonian h.

The one-turn motion of the test particle with 4D coordinates $X=\left(x, p_{x}, y, p_{y}\right)$ is described by a symplectic map as follows: $X_{1 \text { turn }}=M X_{\text {inii }}$,

$$
\begin{equation*}
M=\prod_{n=1}^{N_{1 \mathrm{r}}} M_{n} e^{: f^{(n)}:} M_{N_{1 \mathrm{r}}+1} \tag{1}
\end{equation*}
$$

The map product $M_{n} e^{e f^{(n)}}$ of a linear map and a Lie exponent describes motion from one $l r$ to the next. The factors : $f^{(n)}$:, assumed to act on the same (initial) variable, are

$$
\begin{equation*}
f^{(n)}(x, y)=-H^{(n)}\left(x, y ; \theta_{\mathrm{str}}^{(n)}\right), \tag{2}
\end{equation*}
$$

where H is in units of $\lambda \equiv \frac{N_{b} r_{0}}{\gamma}, \gamma$ is the relativistic factor and N_{b} is the bunch population. For a general (head-on or $l r)$ collision, the coefficients are ($[7,8]$):

$$
\begin{gathered}
C_{m k}\left(\vec{a} ; \theta_{\mathrm{str}}\right)=\frac{1}{4 \pi^{2}} \iint_{0}^{2 \pi} H\left(\vec{a} ; \theta_{\mathrm{str}}\right) e^{-i m \phi_{x}-i k \phi_{y}} d \phi_{x} d \phi_{y} \\
=i^{m+k} \int_{0}^{1} \frac{d t}{t g_{r}(t)}\left(\delta_{m} \delta_{k}-\mathrm{Q}_{m}^{x}(t) \mathrm{Q}_{k}^{y}(t)\right) \\
\mathrm{Q}_{m}^{z}(t)=\frac{i^{-m}}{2 \pi} \int_{0}^{2 \pi} e^{-i m \phi_{z}-t P_{z}} d \phi_{z} ; \\
P_{z}=\frac{1}{2}\left(\bar{a}_{z} \sin \phi_{z}+\bar{d}_{z}\right)^{2}, \quad z=(x, y) \\
\overline{a_{x}}=r a_{x}, \bar{d}_{x}=d_{x}, \overline{a_{y}}=\frac{a_{y}}{g_{r}(t)}, \quad \bar{d}_{y}=\frac{r d_{y}}{g_{r}(t)}, \\
g_{r}(t) \equiv \sqrt{1+\left(r^{2}-1\right) t} .
\end{gathered}
$$

δ_{m} is the Krönecker delta function. In this paper $\delta_{m} \delta_{k}=0$.
In Eq. (2), H depends on x, y and the parameter array $\theta_{\text {str }}=\left(\mathrm{D}_{x, y}, \sigma_{x, y}\right)$ - the real-space full separations $\mathrm{D}_{x, y}$ and r.m.s. sizes $\sigma_{x, y}$ (omitting "strong" in σ). With the transform $\bar{x}=\sqrt{2 J_{x}} \sin \phi_{x} \bar{p}_{x}=\sqrt{2 J_{x}} \cos \phi_{x}$ (and similar for y), H in Eq. (3) has been rewritten in terms of $a_{x, y}$. An exact anti-symmetry of IR is assumed, leading to $\theta_{\text {str }} \equiv\left(d_{x, y}, r\right)$, where $d_{x, y}=D_{x, y} / \sigma_{x, y}$ are normalized offsets (relative separations between the orbits of the colliding bunches) and $r \equiv \frac{\sigma_{y}}{\sigma_{x}}$ is the strong-beam sigma aspect ratio. Either $d_{x} \neq 0$ (in IR5), or $d_{y} \neq 0$ (in IR1) and also in general $r \neq 1$.

Symmetries in the Coefficients

One need calculate $C_{m k}$ only for positive m and k and then use the fact that H is real. For fixed a_{x}, a_{y} and $\theta_{\text {str }}$, negating an index follows the rules

$$
\begin{aligned}
& C_{-m-k}=(-1)^{m+k} C_{m k} \\
& C_{-m k}=(-1)^{m} C_{m k} \\
& C_{m-k}=(-1)^{k} C_{m k} .
\end{aligned}
$$

Further, the lr occur at longitudinal locations spaced half bunch distance apart, positioned symmetrically on both sides of the interaction points IP5 and IP1. The symmetry implies that $\theta_{\text {str }}$ changes in a specific way from left (L) to right (R) side within the IR (anti-symmetry in optics), and from IR5 to IR1 (x and y planes switched). To take this into account, with "slot" (\#) being the lr number counted from from the IP, one first computes the four $C_{m k}$ corresponding to a fixed slot, and then loops over the $N_{1 r} / 4$ slots. It can be shown that within a slot the following relations hold:

$$
\begin{gather*}
C_{k m}\left(a_{x}, a_{y} ; \theta_{\mathrm{str}}^{1 R}\right)=C_{m k}\left(a_{y}, a_{x} ; \theta_{\mathrm{str}}^{5 L}\right) \\
C_{k m}\left(a_{x}, a_{y} ; \theta_{\mathrm{str}}^{1 L}\right)=C_{m k}\left(a_{y}, a_{x} ; \theta_{\mathrm{str}}^{5 R}\right) \tag{4}
\end{gather*}
$$

Thus one can calculate $C_{m k}$ for the lr in IR5 and use Eq. (4) to find the coefficients for IR1. However, for this IR5 needs to be treated twice (the second time with the exchange $a_{x} \leftrightarrow a_{y}$. For fixed amplitudes, deducing the full set of coefficients that describes one of the insertions from the other is (unfortunately) found to be impossible.

Closed-Orbit and Gradient Perturbation

Denote with hats matrices corresponding to linear operators. The linear maps M_{n}, as well as the accumulated maps (to the n-th collision): $\bar{M}_{n}=M_{1} M_{2} \ldots M_{n}$ are extracted from an optics code (MadX, [11]): assumed uncoupled, they are in a familiar manner given by $\beta_{x, y}^{(n)}, \alpha_{x, y}^{(n)}, \mu_{x, y}^{(n)}$ - the linear twiss parameters and betatronic phase advances at the lr. With $\beta_{x, y}, \alpha_{x, y}$ being their values for $n=N_{1 \mathrm{r}}+1$ (matched Twiss parameters for the ring) the total phase advances $\vec{\mu}=\left(\mu_{x}, \mu_{y}\right)$ are found from the trace of the ring $\operatorname{matrix} \hat{M} \equiv \hat{M}_{N_{1 \mathrm{r}}+1}$.

The coefficients Eq. (3) need to be corrected (see [12]), since the above matrices are 1 - computed w.r.t. the perturbed closed orbit and 2-correspond to perturbed Twiss parameters for the ring. For the closed orbit, by Fourier-expanding the x, y-terms in H, one needs to replace: $C_{m k} \rightarrow C_{m k}-\Delta_{m k}^{1}$, where $\Delta_{m k}^{1}=-i m \delta_{|m|-1} \delta_{k} \frac{r a_{x}}{d_{x}}(1-$ $\left.e^{-d_{x}^{2} / 2}\right)$. Similarly, expanding H to second order in x, y gives $C_{m k} \rightarrow C_{m k}-\Delta_{m k}^{2}$, where

$$
\begin{aligned}
\Delta_{m k}^{2} & =-\delta_{|k|}\left(\delta_{|m|-2}-2 \delta_{m}\right) \times \\
& \times r^{2} a_{x}^{2} e^{-\frac{1}{2} d_{x}^{2}}\left(1-e^{\frac{1}{2} d_{x}^{2}}+d_{x}^{2}\right) /\left(4 d_{x}^{2}\right)- \\
& -\delta_{m} \delta_{|k|-2} a_{y}^{2}\left(1-e^{-\frac{1}{2} d_{x}^{2}}\right) /\left(4 d_{x}^{2}\right)
\end{aligned}
$$

with δ assuring that only $C_{ \pm 1, \pm 1}, C_{ \pm 2, \pm 2}$ are affected. The new coefficients $C_{m k}-\Delta_{m k}^{1}-\Delta_{m k}^{2}$ are substituted in h.

It has been shown [12] that the effective Hamiltonian h is a straight-forward generalization of the 1D case:

$$
\begin{align*}
& h(\vec{J}, \vec{\phi}, \vec{\mu})=-\mu_{x} J_{x}-\mu_{y} J_{y}+S(\vec{J}, \vec{\phi}, \vec{\mu}) \tag{5}\\
& S(\vec{J}, \vec{\phi}, \vec{\mu}) \equiv \lambda \sum_{n=1}^{N_{1 r}} \sum_{m k=-N_{\mathrm{c}}}^{N_{\mathrm{c}}} C_{m k}\left(a_{x}, a_{y} ; \theta_{\mathrm{str}}^{(n)}\right) \times \\
& \frac{\left(m \mu_{x}+k \mu_{y}\right)}{2 \sin \frac{1}{2}\left(m \mu_{x}+k \mu_{y}\right)} e^{i m\left(\frac{\mu_{x}}{2}+\phi_{x}+\mu_{x}^{(n)}\right)+i k\left(\frac{\mu_{y}}{2}+\phi_{y}+\mu_{y}^{(n)}\right)} .
\end{align*}
$$

The derivation of Eq. (5) follows [13].
The S above is expanded as follows: $S(\vec{J}, \vec{\phi}, \vec{\mu})=\mu_{x} S_{x}(\vec{J}, \vec{\phi})+\mu_{y} S_{y}(\vec{J}, \vec{\phi})+\ldots . \quad$ By neglecting all (...)-terms, the two invariants are $-h / \mu_{z}$, where $z=(x, y)$, see [6]:

$$
\begin{aligned}
& W_{x}\left(J_{x}, \phi_{x}\right) \equiv J_{x}-S_{x}\left(J_{x}, J_{y}^{0}, \phi_{x}, \frac{\pi}{2}\right), \\
& W_{y}\left(J_{y}, \phi_{y}\right) \equiv J_{y}-S_{y}\left(J_{x}^{0}, J_{y}, \frac{\pi}{2}, \phi_{y}\right) .
\end{aligned}
$$

Finally, the desired curves $J_{z}\left(\phi_{z}\right)$, are implicitly given by

$$
\begin{equation*}
W_{x}\left(J_{x}, \phi_{x}\right)=W_{x}\left(J_{x}^{0}, \frac{\pi}{2}\right), \quad W_{y}\left(J_{x}, \phi_{x}\right)=W_{y}\left(J_{y}^{0}, \frac{\pi}{2}\right), \tag{6}
\end{equation*}
$$

where for given $a_{x, y}$ the initial actions are $J_{x, y}^{0}=\epsilon a_{x, y}^{2}$ and $\epsilon=3.3510^{-10} \mathrm{~m} . \mathrm{rad}(\pi / 2$ appears because of the \sin chosen in Eq. (3)). In the next section, the two solutions of Eq. (6) are plotted over the interval $-\pi<\phi_{x, y}<\pi$.

RESULTS

A first-order BCH formula is used to derive h, hence it is clear that Eq. (5) also describes the lowest order distortions due to lattice multipoles (by redefining the strength λ). Such a test is performed on Fig. 1.

Figure 1: Contours of constant value of W_{x}, for a FODO cell containing several thin sextupoles tuned near third order resonance $\left(\mu_{x}, \mu_{y}\right) /(2 \pi)=(0.335,0.29)$ (left), and comparisons with MadX tracking (right).

Assuming (hypothetically) the lr beam-beam to be the only nonlinearity present in the HL-LHC ring with nominal lr setup - 18 lr per IR side, spanning normalized separations $8-14 \sigma$ and $N_{\mathrm{b}}=1.110^{11}$, the ability of $W_{x, y}$ to reproduce ring tracking at amplitudes approaching the strong-beam core is verified on Figs. 2 and 3. Here only

MC5: Beam Dynamics and EM Fields

6 Fourier coefficients are used. In fact, as expected, the shape of the distorted invariant is dominated by terms up to and including octupole. For Fig. 2, the particle is launched in-plane (either $y=0$ or $x=0$) with increasing amplitude. Some disagreement is observed either for amplitudes too far from the strong-beam core (loss of numerical accuracy in case of vanishing smears, $<1 \%$) or, as it should be, when the particle penetrates the strong beam. Figure 3 shows offplane tracking at "45-degree" initial angle, $a_{x}=a_{y}$. Since coupling is neglected, only the maximum excursions of the two curves approximately agree.

Figure 2: In-plane tracking around the ring ($N_{1 \mathrm{r}}=4 \times 18$) of the weak-beam particle using MadX (red dots) and the projected invariants computed with 6 coefficients $N_{c}=6$, Eq. (6) (blue). The particle is launched in either X (left) or Y (right) planes with $a_{x(y)}=4,6,8$ and 10. It penetrates the strong beam core at $\sim 8 \sigma$.

Figure 3: Off-plane tracking around the ring ($N_{1 r}=4 \times 18$): MadX (red) and projected invariants (blue). The particle is launched at combined amplitude $=6(\times 1 / \sqrt{2}$ on plots). Here again $N_{\mathrm{c}}=6$. The smear is $\sim 5 \%$.

Another test concerns application of Hamiltonian drivingterms (HDT), see Introduction, in 1D, i.e. in the plane of collision, to the optimization of HL-LHC wire correctors - see [14] and references therein. Let, for some n in

Eq. (2), the lr kicks correspond to wires (w) described by $H^{\mathrm{w}(n)}$ and $C_{m k}^{\mathrm{w}(n)}$. The total HDT, left or right of the IP, is $\sum_{\mathrm{L}(\mathrm{R})} D_{m}^{1 . \mathrm{r} .}+D_{m}^{\mathrm{w}, \mathrm{L}(\mathrm{R})}$, where $D_{m} \equiv i^{-m} C_{m 0}$ is real-valued. Notice that, compared with the two-dimensional resonance driving term (RDT) treatment in [14], the HDT defined here is in-plane (a disadvantage), but it depends on $a_{x, y}$ (advantage).

The following property has been demonstrated: there exists a left-right independent solution for the wires such that each of the above L and R sums can be reduced to zero simultaneously for all m and moreover, the solution is valid at all amplitudes outside (below) the strong beam core. Such a solution is tested on Figs. 4 and 5. Differently from [14], it corresponds to unequal parameters (distance to the axis and integrated current) for the left and right wire (they become equal only if the wire is installed at a location where $r=1$).

Figure 4: Simultaneous (for all m) cancellation of Hamiltonian driving terms in IR5 in case of the in-plane left-right independent wire correction explained in the text. The sum over the 18 lr collision points $\sum D_{m}^{1 . r . C P}$ (blue) is equal to $-D_{m}^{W}$ of the wire (red), both computed for $a_{x}=6$. Similar plots result at lower amplitudes.

Figure 5: A test of the in-plane left-right independent wire correction. Two wires in IR5 are installed according to Fig. 4 and another two, symmetrically, in IR1. Tracking around the ring (MadX) with $\left(a_{x}, a_{y}\right)=(6,0)$ (left plots) and $\left(a_{x}, a_{y}\right)=(0,6)$ (right plots) and invariants $W_{x, y}$.

REFERENCES

[1] D. Kaltchev, "On beam-beam resonances observed in LHC tracking", TRIUMF, Vancouver, Canada, Rep. TRI-DN-07-9, March, 2007.
[2] D. Kaltchev and W. Herr, "Analytical Calculation of the Smear for Long-Range Beam-Beam Interactions", in Proc. 23rd Particle Accelerator Conf. (PAC'09), Vancouver, Canada, May 2009, paper TH6PFP096, pp. 3934-3936.
[3] D. Kaltchev and W. Herr, "Analysis of long range studies in the LHC - comparison with the model", CERN, Geneva, Switzerland, Rep. CERN-2014-004.93, Mar. 2013.
[4] A. J. Dragt and O. G. Jakubowicz, "Analysis of the BeamBeam Interaction Using Transfer maps", in Proc. the Beam Beam Interaction Seminar, Stanford, CA, May 22-23, 1980.
[5] A. J. Dragt, "Transfer Map approach to the Beam-Beam interaction", AIP Conference Proceedings, vol. 57, p. 143, 1980. doi:10.1063/1.32106
[6] A. Chao, Lie Algebra Techniques for Nonlinear Dynamics, http:/www.slac.stanford.edu/
[7] D. Kaltchev, "Fourier Coefficients of Long-Range BeamBeam Hamiltonian via Two-Dimensional Bessel functions", in Proc. 9th Int. Particle Accelerator Conf. (IPAC'18), Vancouver, Canada, Apr.-May 2018, pp. 3486-3488. doi: 10 . 18429/JACoW-IPAC2018-THPAK108
[8] D. Kaltchev, "Fourier expansion of Long Range Beam-Beam Hamiltonian", TRIUMF, Vancouver, Canada, Rep. TRI-BN1805, Apr. 2018.
[9] Optics and layout repository for the third version of sLHC, http://proj-lhc-optics-web.web.cern.ch/ proj-lhc-optics-web/OpticsSourceAllVersions. link/SLHCV3.0/
[10] T. Sen et al., "Beam-beam effects at the Fermilab Tevatron: Theory", Phys. Rev. ST Accel. Beams, vol. 7, p. 041001, 2004. doi:10.1103/PhysRevSTAB.7.041001
[11] MAD-X user's guide, mad.web.cern.ch/mad
[12] D. Kaltchev, "Derivation of a two-dimensional Beam-Beam invariant and applications to HL-LHC", arXiv.org, in preparation.
[13] J. Bengtsson and J. Irwin, "Analytical Calculation of Smear and Tune Shift", CERN, Geneva, Switzerland, Rep. SSC-232, Feb. 1990.
[14] S. Fartoukh, A. Valishev, Y. Papaphilippou, and D. Shatilov, "Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC", Phys. Rev. ST Accel. Beams, vol. 18, p. 121001, 2015. doi:10.1103/PhysRevSTAB.18.121001

