Paper | Title | Page |
---|---|---|
MOPAB014 | First High Spin-Flip Efficiency for High Energy Polarized Protons | 84 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. In order to minimize the systematic errors for the Relativistic Heavy Ion Collider (RHIC) spin physics experiments, flipping the spin of each bunch of protons during the stores is needed. Experiments done with single RF magnet at energies less than 2 GeV have demonstrated a spin-flip efficiency over 99%. At high energy colliders with Siberian snakes, a single magnet spin flipper does not work because of the large spin tune spread and the generation of multiple, overlapping resonances. Over past decade, RHIC spin flipper design has evolved and a sophisticated spin flipper, constructed of nine-dipole magnets, was developed to flip the spin in RHIC. A special optics choice was also used to make the spin tune spread very small. In recent experiment, 97% spin-flip efficiency was measured at both 24 and 255 GeV for the first time. The results show that efficient spin flipping can be achieved at high energies. |
||
Poster MOPAB014 [0.984 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB014 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 08 June 2021 issue date ※ 20 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB015 | Feasibility of Polarized Deuteron Beam in the EIC | 87 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The physics program in the EIC calls for polarized neutron beam at high energies. The best neutron carriers are 3He nuclei and deuterons. Both neutron carries are expected to be used by spin physics program in the EIC. Due to the small magnetic moment anomaly of deuteron particles, much higher magnetic fields are required for spin rotation, so full Siberian snake is not feasible. However, the resonance strength is in general weak and the number of resonances is also small. It is possible to deal with individual resonances with conventional methods, such as betatron tune jump for intrinsic depolarizing resonances; and a weak partial snakes for imperfection resonances. The study shows that accelerating polarized deuteron beyond 100GeV/n is possible in the EIC. |
||
Poster MOPAB015 [0.977 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB015 | |
About • | paper received ※ 16 May 2021 paper accepted ※ 28 May 2021 issue date ※ 13 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB179 | Simulations of AGS Boosters Imperfection Resonances for Protons and Helions | 606 |
|
||
Funding: Work supported by Brookhaven Science Associates LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. As part of the effort to increase the polarization of the proton beam for the physics experiments at RHIC, a scan of orbit harmonic corrector strengths is performed in the Booster to ensure polarization transmission through the |G gamma|=3 and 4 imperfection resonances is optimized. These harmonic scans have been simulated using quadrupole alignment data and accurately match experimental data. The method used to simulate polarized protons is extended to polarized helions for crossing the |G gamma|=5 through |G gamma|=10 imperfection resonances and used to determine the corrector strength required to cross each resonance. |
||
Poster MOPAB179 [0.437 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB179 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 31 May 2021 issue date ※ 02 September 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB180 | AGS Dynamic Aperture at Injection of Polarized Protons and Helions | 610 |
|
||
Funding: Work supported by Brookhaven Science Associates LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Polarized helions are part of the physics program for the future EIC. An AC dipole has been installed in the AGS Booster to preserve polarization as helions are accelerated to |Ggamma|=10.5. Extraction from the AGS Booster at |Ggamma|=7.5 is possible but: would involve crossing an intrinsic resonance in the AGS, and would be the lowest rigidity beam injected into the AGS, and therefore experiences strong distortions of the optical functions because of the AGS two partial snakes. This lower rigidity would exacerbate the optical distortions from the snake, reducing the dynamic aperture. A comparison of the dynamic aperture of protons at Ggamma=4.5 to that of helions at |Ggamma|=7.5 and |Ggamma|=10.5 show that extraction at |Ggamma|=10.5 provides a larger dynamic aperture. This larger aperture would allow helions to be placed inside the spin tune gap generated by the two partial helices in AGS earlier in the cycle. |
||
Poster MOPAB180 [0.453 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB180 | |
About • | paper received ※ 17 May 2021 paper accepted ※ 31 May 2021 issue date ※ 20 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPAB264 | Commissioning of the DESIR High-Resolution Separator at CENBG | 841 |
|
||
DESIR is the low-energy part of the SPIRAL2 ISOL facility under construction at GANIL. The high-resolution mass separator (HRS) included in DESIR is a 180 degree symmetric online separator with two 90 degree magnetic dipole sections arranged with electrostatic quadrupoles, sextupoles and a multipole on the mid plane. The HRS is now completely mounted at CENBG and under commissioning for the next 2 to 3 years before its transfer at the entrance of the DESIR facility. The objective is to test, characterise and correct all HRS elements contributing to the higher order aberration by performing experimental measurements and comparing them with the results from different simulation tools. The recently mounted pepperpot-type emittance-meter will allow us to observe the emittance figures and dynamically tune the multipole to improve the optical parameters of the HRS. We will present the first results concerning the hexapolar correction with the multipole, the associated emittance measurements and the resolution currently achieved. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB264 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 08 June 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB042 | Large Radial Shifts in the EIC Hadron Storage Ring | 1443 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Ion Collider will collide hadrons in the Hadron Storage Ring (HSR) with ultra-relativistic electrons in the Electron Storage Ring. The HSR design trajectory includes a large radial shift over a large fraction of its circumference, in order to adjust the hadron path length to synchronize collisions over a broad range of hadron energies. The design trajectory goes on-axis through the magnets, crab cavities and other components in the six HSR Insertion Regions. This paper discusses the issues involved and reports on past and future beam experiments in the Relativistic Heavy Ion Collider, which will be upgraded to become the HSR. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042 | |
About • | paper received ※ 18 May 2021 paper accepted ※ 15 June 2021 issue date ※ 21 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEXA04 | The RCS Design Status for the Electron Ion Collider | 2521 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The design of the Electron-Ion Collider Rapid Cycling Synchrotron (RCS) to be constructed at Brookhaven National Laboratory is advancing to meet the injection requirements for the Electron Storage Ring (ESR). Over the past year activities are focused on developing the approach to inject two 28 nC bunches every second, up from the original design of one 10nC bunch every second. The solution requires several key changes concerning the injection and extraction kickers, charge accumulation via bunch merging and a carefully calibrated RF acceleration profile to match the longitudinal emittance required by the ESR. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEXA04 | |
About • | paper received ※ 19 May 2021 paper accepted ※ 31 August 2021 issue date ※ 10 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAB005 | Design Status Update of the Electron-Ion Collider | 2585 |
|
||
Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy. The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments. |
||
Poster WEPAB005 [2.095 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005 | |
About • | paper received ※ 14 May 2021 paper accepted ※ 22 June 2021 issue date ※ 16 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB007 | Technology Spinoff and Lessons Learned from the 4-Turn ERL CBETA | 3762 |
|
||
The Cornell-BNL ERL Test Accelerator (CBETA) developed several energy-saving measures: multi-turn energy recovery, low-loss superconducting radiofrequency (SRF) cavities, and permanent magnets. With green technology becoming imperative for new high-power accelerators, the lessons learned will be important for projects like the FCC-ee or new light sources, where spinoffs and lessons learned from CBETA are already considered for modern designs. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB007 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 05 July 2021 issue date ※ 12 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB174 | T-BMT Spin Resonance Tracker Code for He3 with Six Snakes | 4101 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy . Polarization lifetime for He3 using two and six snakes are studied using the T-BMT Spin Resonance Tracker code. This code integrates a reduced spinor form of the T-BMT equation including only several spin resonances and the kinematics of synchrotron motion. It was previously benchmarked against RHIC polarization lifetime under the two snake system *. * Phys. Rev.Accel. Beams 22 (2019) 9, 091001 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB174 | |
About • | paper received ※ 20 May 2021 paper accepted ※ 02 July 2021 issue date ※ 28 August 2021 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |