Design Status Update of the Electron-Ion Collider

Christoph Montag, BNL, for the EIC Design Team IPAC'21 WEPAB006

Electron-Ion Collider

Jefferson Lab

Requirements for the EIC

Requirements for an Electron-Ion Collider are defined in the White Paper:

- High luminosity: L = 10³³ to 10³⁴ cm⁻²sec⁻¹ factor 100 to 1000 beyond HERA
- Large range of center-of-mass energies E_{cm} = 20 to 140 GeV
- Polarized beams with flexible spin patterns
- Favorable condition for detector acceptance such as $p_T = 200$ MeV
- Large range of hadron species: protons Uranium
- Collisions of electrons with polarized protons and light ions (^{↑3}He, [↑]d,...)

EIC Design Concept (in a nutshell)

- Take one RHIC ring with its entire injector complex as the EIC hadron ring
- Add electron cooling to lower emittance and counteract IBS
- Modify the hadron ring to be suitable for EIC beam parameters
- Install an electron storage ring in the existing tunnel
- Use a spin-transparent rapid-cycling synchrotron as full-energy polarized electron injector for rapid bunch replacement to counteract depolarization
- Build a high luminosity interaction region that fulfills acceptance requirements

Facility layout

Electron complex to be installed in existing RHIC tunnel – cost effective

Electron-Ion Collider

Parameters for Highest Luminosity

	proton	electron
no. of bunches	1160	
energy [GeV]	275	10
bunch intensity [10 ¹⁰]	6.9	17.2
beam current [A]	1.0	2.5
$\epsilon_{\sf RMS}$ hor./vert. [nm]	9.6/1.5	20.0/1.2
$eta^*_{x,y}$ [cm]	90/4	43/5
bb. param. hor./vert.	0.014/0.007	0.073/0.100
σ_s [cm]	6	2
$\sigma_{\mathrm{d}p/p}$ [10 ⁻⁴]	6.8	5.8
$ au_{\rm IBS}$ long./transv. [h]	3.4/2.0	N/A
$L \ [10^{33} { m cm}^{-2} { m sec}^{-1}]$	10.05	

- Hadron beam parameters similar to present RHIC, but smaller vertical emittance and many more bunches
- 2 hour IBS growth time requires strong hadron cooling
- Electron beam parameters resemble a B-Factory
 Parameters optimized for high luminosity at high energy
 Alternative optimizations are possible, for example for high luminosity at low
 energy

Luminosity vs. CM Energy

- Parameter and IR optimization at 105 GeV center-of-mass energy
- Optimization yields 10³⁴ cm⁻² sec⁻¹ luminosity at 105 GeV

6

MOPAB385, TUPAB335, TUPAB212, TUPAB235, WEPAB035, THPAB034, THPAB238, WEPAB032, TUPAB253, TUPAB254, TUPAB258, TUPAB257

Electron Storage Ring

Composed of six FODO arcs with 60° /cell for 5 to 10 GeV

90° /cell for 18 GeV

- Super-bends for 5 to 10 GeV for emittance control
- Straight sections with simple layout
- Up to two interaction regions

Storage Ring

- Beam parameters require careful study of collective effects
- Radiate approx. 10 MW for maximum luminosity parameters at 10GeV

591 MHz SRF

EIC Electron Polarization

- Physics program requires bunches with spin "up" and spin "down" (in the arcs) to be stored simultaneously
- Sokolov-Ternov self-polarization would produce only polarization anti-parallel to the main dipole field
- Only way to achieve required spin patterns is by injecting bunches with desired spin orientation at full collision energy
- Sokolov-Ternov will over time re-orient all spins to be anti-parallel to main dipole field
- Spin diffusion reduces equilibrium polarization
- Need frequent bunch replacement to overcome Sokolov-Ternov and spin diffusion

High Average Electron Polarization

- Frequent injection of bunches with high initial polarization of 85%
- Initial polarization decays towards $P_{\infty} < ~50\%$
- At 18 GeV, every bunch is replaced (on average) after 2.2 min with RCS cycling rate of 2Hz

WEXA04, TUPAB037, WEPAB019

Rapid Cycling Synchrotron as Full Energy Polarized Injector

- Both the strong intrinsic and imperfection resonances occur at spin tunes:
 - **G**Y = nP +/- Qy
 - **GY** = nP +/- [Qy] (integer part of tune)
- To accelerate from 400 MeV to 18 GeV requires the spin tune ramping from
 - 0.907 < GY < 41.
- If we use a periodicity of P=96 and a tune Qy with an integer value of 50 then our first two intrinsic resonances will occur outside of the RCS energy range:
 - **GY1** = $50 + v_y$ (v_y is the fractional part of the tune)
 - **GY**2 = 96 $(50+v_v)$ = 46- v_v
 - Imperfection resonances will follow suit with the first major one occurring at GY2 = 96 – 50 = 46

Spin Tracking in the Rapid-Cycling Synchrotron

High quasi-symmetry, with identity transformation in straight sections
➔ Good spin transparency properties

11

Electron-Ion Collider

- Requires well aligned quadrupoles, rms orbit ≤ 0.5 mm, and good reproducibility
- Well within the present state of the art of orbit control
- Orbit stability routinely achieved by NSLS-II Booster synchrotron

WEPAB193, WEPAB194, THPAB019, THPAB006, TUPAB042, TUPAB036, TUPAB179, TUPAB180, THPAB141

Hadron Ring

- Existing RHIC facility will be re-purposed as EIC hadron storage ring
- Beam parameters are similar to RHIC, except number of bunches and vertical emittance
- Need strong hadron cooling at store energy to counteract IBS

TUPAB260, MOPAB360, TUPAB259, TUPAB381, WEPAB189

Hadron Storage Ring Modifications

- Insertion of pre-coated sleeves improve conductivity and reduce SEY
- Rebuild injection area with faster kickers to accommodate shorter bunch spacing
- Remove energy-limiting DX separator dipoles
- Inner arc between IRs 10 and 12 for circumference matching during 41 GeV low-energy operation
- (Energy range from 100 to 275 GeV can be covered by radial shift)

EIC Hadron Polarization

MOPAB015, MOPAB180

Electron-Ion Collider

EIC will fully benefit from present RHIC polarization and near future upgrades

Measured RHIC Results with Siberian Snakes:

- Proton Source Polarization 83 %
- Polarization at extraction from AGS 70%
- Polarization at RHIC collision energy 60%

Planned near term improvements:

AGS: Stronger snake, skew quadrupoles, increased injection energy
→ expect 80% at extraction of AGS
RHIC: Add 4 snakes to 2 existing, no polarization loss
→ expect 80% polarization in RHIC and eRHIC

Expected results obtained from simulations which are benchmarked by RHIC operations

Polarized ³He in EIC with six snakes

Achieved ~85% polarization in 3He ion source Benchmarked simulations:

Polarization preserved with 6 snakes, at twice the design emittance

Polarized Deuterons in EIC:

Requires tune jumps in RHIC to overcome few intrinsic resonances Benchmarked simulation shows 100% spin transparency No polarization loss expected in the EIC hadron ring

Interaction Region

WEPAB002, WEPAB003, WEPAB006, THPAB239, WEPAB340, TUPAB041, TUPAB040

- +/- 4.5 m machine-element free space for central detector
- 25 mrad total crossing angle, crab crossing
- Transverse momentum acceptance down to 200 MeV/c
- Peak magnetic fields below 6T (NbTi sufficient)
- Most magnets direct-wind; few collared magnets

Spin Rotators

Longitudinal polarization is provided by pairs of spin rotators around the IR:

- Helical dipole rotators for hadrons (same as in present RHIC)
- Solenoid-based rotators for electrons
- Compact electron spin rotator would ease geometric layout in the tunnel

Rotators are included in spin matching to avoid polarization loss

THPAB028, WEPAB010, WEPAB008, WEPAB009, THPAB015, WEPAB252

Beam-beam

- Electrons and protons operate at beam-beam limit, $\xi_e = 0.1$, $\xi_p = 0.015$
- Crab crossing of long proton bunches requires second harmonic crab cavities
- Studied effect of electron bunch replacement on proton emittance
- Performed extensive weak-strong and strongstrong simulations to optimize design parameters

Summary

- The EIC is designed to collide highly polarized electron and light ion (p, d, h) beams, as well as unpolarized heavy ions
- EIC reaches a peak electron-proton luminosity of

```
L= 1.05·10<sup>34</sup>cm<sup>-2</sup>s<sup>-1</sup>
```

at 105 GeV center-of-mass energy

- Arbitrary spin patterns ("up" and "down") in both beams are provided by injectors
- Ingenious design of the rapid cycling electron synchrotron (RCS) allows polarization preservation all the way up to 18 GeV
- Frequent electron bunch replacement allows short lifetime (1 to 2 h) in ESR
- Strong hadron cooling to reduce and preserve emittance will result in very long hadron beam lifetimes