

# Feasibility of Polarized Deuteron Beam in the EIC

### H. Huang, F. Meot, V.Ptitsyn, V. Ranjbar, T. Roser

70 YEARS OF DISCOVERY

#### **A CENTURY OF SERVICE**





May 24, 2021 IPAC21

## **Polarized Deuterons in EIC**

- There are interests from EIC user group to study neutron spin property in EIC.
- Since neutron can not be accelerated, the next two candidates are He3 and deuteron.

#### In EIC hadron ring

|                                          | p          | <sup>3</sup> He <sup>+2</sup> | d        |
|------------------------------------------|------------|-------------------------------|----------|
| m, GeV                                   | 0.938      | 2.808                         | 1.876    |
| G                                        | 1.79       | -4.18                         | -0.143   |
| E/u, GeV                                 | 24-275     | 10-183                        | 12-137   |
| <b> </b> <i>Gγ</i>                       | 45.5-525.5 | 48.5-818                      | 1.6-20.9 |
| <b>BROOKHAVEN</b><br>NATIONAL LABORATORY |            |                               |          |

#### Small deuteron G:

- Much higher magnetic field required for spin rotation (Siberian Snakes not feasible)
- But:
  - Weaker resonances
  - Small number of

#### resonances

(makes it possible to deal with individual resonances)



## **Polarized Deuterons in the Injectors**

- Gγ range in the Booster: -0.14 to -0.22. No imperfection resonance. If fractional tune is not between 0.14 and 0.22 (or 0.78-0.86), no need to concern about intrinsic one either.
- Gγ range in the AGS: -0.22 to -1.6. One very weak imperfection resonance. Three intrinsic resonances but none of them is enhanced with superperiod of 12. For the given AGS ramp rate, none of these causes polarization loss.
  - AtR line: With such a small G value and no snake in the AGS, the spin match in the AtR line is not an issue. Tracking shows that there would be no visible spin mismatch.







### **Imperfection Resonance Strength and Partial Snakes**



Analysis shows that a partial snake of .45% is enough to overcome these resonances. Indeed, the solenoid field of the detector is 15Tm which is 0.45% at top energy.

### **Imperfection Resonance for Deuterons**

- Gγ range: -1.6 to -20.9. Total of 19 imperfection resonances. With rms orbit error of 0.3mm, the strongest resonance strength is less than 0.0015. From the nominal ramp rate in RHIC d-Au run in 2016, the ramp rate is about  $d\gamma/dt=90/220s =>$ resonance crossing rate  $\alpha=1.2E-7$ .
- A partial snake can be used to overcome these resonances. The required partial snake snake strength is 0.45%. The existing snake is not strong enough. Adding a solenoid is a solution. 15Tm warm solenoid (0.45% partial snake) should work.







### **Single Detector Solenoid Case**

• In this case, the spin is naturally longitudinal at  $G\gamma$ =int. at the IR. When  $\theta$ =0, sin ( $G\gamma\pi$ )=0, polarization will be along the longitudinal direction at every  $G\gamma$ =integer.

Stable spin direction for a partial snake with longitudinal rotating axis is: Vertical  $\cos \alpha_3 = \frac{1}{\sin \pi \nu_s} \sin(\pi G \gamma) \cos(\frac{S}{2}),$ Horizontal  $\cos \alpha_1 = -\frac{1}{\sin \pi \nu_s} \sin G \gamma (\pi - \theta) \sin(\frac{S}{2}),$ Longitudinal  $\cos \alpha_2 = \frac{1}{\sin \pi \nu_s} \cos G \gamma (\pi - \theta) \sin(\frac{S}{2}).$ 







## **Intrinsic Resonances**

- The 3-symmetry means the stronger resonance strength occurs at  $G\gamma=3n+-v_y$ . However, due to the slow ramp rate, other resonances also can cause polarization loss.
- The strongest resonance is at  $|G\gamma|=|12-v_y|$ , the strength is around 3.5e-3 for  $2\pi$  beam. This resonance can fully flip spin. Others require a tune jump of 0.03 in 50 turns (increase the crossing speed by 800 times) for over 99% spin flip.
- Consider the 3-fold symmetry, we will use three jump quads each can jump vertical tune by 0.01 in fifty turns.







### **Intrinsic Resonance Strength for Three lattices**



The two dash-lines are calculated with Gaussian distribution of  $2\pi$  rms emittance. The strongest resonance at  $|v_y-12|$  will flip spin fully by itself.



### **Polarization after Each Intrinsic Resonance**



The polarization after each intrinsic resonance with Gaussian distribution of  $2\pi$  rms emittance. The modest tune jump is good except at  $|v_y-12|$ , which can be overcome by normal ramp without firing tune jump quads. The overall efficiency for the tune jump method plus normal ramp across  $|v_y-12|$  is 95%.

## **Summary**

- Polarized deuteron possibility in EIC has been explored.
- The imperfection resonances can be overcome by the planned detector solenoid for EIC (15Tm).
- At  $G\gamma$  =integer, longitudinal polarization can be reached at the detector.
- The intrinsic resonances can be overcome with modest vertical tune jump of 0.03 over 50 orbit turns.





