Author: Luo, Y.
Paper Title Page
MOPAB009 Review of the Fixed Target Operation at RHIC in 2020 69
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
As part of the Beam Energy Scan (BES) physics program, RHIC operated in Fixed Target mode at various beam energies in 2020. The fixed target experiment, achieved by scraping the beam halo of the circulating beam on a gold ring inserted in the beam pipe upstream of the experimental detectors, extends the range of the center-of-mass energy for BES. The machine configuration, control of rates, and results of the fixed target experiment operation in 2020 will be presented in this report.
 
poster icon Poster MOPAB009 [2.913 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB009  
About • paper received ※ 16 May 2021       paper accepted ※ 17 August 2021       issue date ※ 23 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB010 RHIC Beam Energy Scan Operation with Electron Cooling in 2020 72
 
  • C. Liu, P. Adams, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, K.A. Brown, D. Bruno, B.D. Coe, K.A. Drees, A.V. Fedotov, W. Fischer, C.J. Gardner, C.E. Giorgio, X. Gu, T. Hayes, K. Hock, H. Huang, R.L. Hulsart, T. Kanesue, D. Kayran, N.A. Kling, B. Lepore, Y. Luo, D. Maffei, G.J. Marr, A. Marusic, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, C. Naylor, S. Nemesure, M. Okamura, I. Pinayev, S. Polizzo, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, V. Schoefer, S. Seletskiy, F. Severino, T.C. Shrey, P. Thieberger, M. Valette, A. Zaltsman, I. Zane, K. Zeno, W. Zhang
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
RHIC provided Au-Au collisions at beam energies of 5.75 and 4.59 GeV/nucleon for the physics program in 2020 as a part of the Beam Energy Scan II experiment. The operational experience at these energies will be reported with emphasis on their unique features. These unique features include the addition of a third harmonic RF system to enable a large longitudinal acceptance at 5.75 GeV/nucleon, the application of additional lower frequency cavities for alleviating space charge effects, and the world-first operation of cooling with an RF-accelerated bunched electron beam.
 
poster icon Poster MOPAB010 [3.523 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-MOPAB010  
About • paper received ※ 17 May 2021       paper accepted ※ 29 July 2021       issue date ※ 10 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB042 Large Radial Shifts in the EIC Hadron Storage Ring 1443
 
  • S. Peggs, J.S. Berg, K.A. Drees, X. Gu, C. Liu, H. Lovelace III, Y. Luo, G.J. Marr, A. Marusic, F. Méot, R.J. Michnoff, V. Ptitsyn, G. Robert-Demolaize, M. Valette, S. Verdú-Andrés
    BNL, Upton, New York, USA
  • K.E. Deitrick
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • B.R. Gamage
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron Ion Collider will collide hadrons in the Hadron Storage Ring (HSR) with ultra-relativistic electrons in the Electron Storage Ring. The HSR design trajectory includes a large radial shift over a large fraction of its circumference, in order to adjust the hadron path length to synchronize collisions over a broad range of hadron energies. The design trajectory goes on-axis through the magnets, crab cavities and other components in the six HSR Insertion Regions. This paper discusses the issues involved and reports on past and future beam experiments in the Relativistic Heavy Ion Collider, which will be upgraded to become the HSR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-TUPAB042  
About • paper received ※ 18 May 2021       paper accepted ※ 15 June 2021       issue date ※ 21 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB002 The Interaction Region of the Electron-Ion Collider EIC 2574
 
  • H. Witte, J. Adam, M. Anerella, E.C. Aschenauer, J.S. Berg, M. Blaskiewicz, A. Blednykh, W. Christie, J.P. Cozzolino, K.A. Drees, D.M. Gassner, K. Hamdi, C. Hetzel, H.M. Hocker, D. Holmes, A. Jentsch, A. Kiselev, P. Kovach, H. Lovelace III, Y. Luo, G.J. Mahler, A. Marone, G.T. McIntyre, C. Montag, R.B. Palmer, B. Parker, S. Peggs, S.R. Plate, V. Ptitsyn, G. Robert-Demolaize, C.E. Runyan, J. Schmalzle, K.S. Smith, S. Tepikian, P. Thieberger, J.E. Tuozzolo, F.J. Willeke, Q. Wu, Z. Zhang
    BNL, Upton, New York, USA
  • B.R. Gamage, T.J. Michalski, V.S. Morozov, M.L. Stutzman, W. Wittmer
    JLab, Newport News, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
This paper presents an overview of the Interaction Region (IR) design for the planned Electron-Ion Collider (EIC) at Brookhaven National Laboratory. The IR is designed to meet the requirements of the nuclear physics community *. The IR design features a ±4.5 m free space for the detector; a forward spectrometer magnet is used for the detection of hadrons scattered under small angles. The hadrons are separated from the neutrons allowing detection of neutrons up to ±4 mrad. On the rear side, the electrons are separated from photons using a weak dipole magnet for the luminosity monitor and to detect scattered electrons (e-tagger). To avoid synchrotron radiation backgrounds in the detector no strong electron bending magnet is placed within 40 m upstream of the IP. The magnet apertures on the rear side are large enough to allow synchrotron radiation to pass through the magnets. The beam pipe has been optimized to reduce the impedance; the total power loss in the central vacuum chamber is expected to be less than 90 W. To reduce risk and cost the IR is designed to employ standard NbTi superconducting magnets, which are described in a separate paper.
* An Assessment of U.S.-Based Electron-Ion Collider Science. (2018). Washington, D.C.: National Academies Press. https://doi.org/10.17226/25171
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB002  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB005 Design Status Update of the Electron-Ion Collider 2585
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, A. Blednykh, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, D.M. Gassner, X. Gu, R.C. Gupta, Y. Hao, A. Hershcovitch, C. Hetzel, D. Holmes, H. Huang, W.A. Jackson, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, M. Mapes, D. Marx, G.T. McIntyre, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, B. Podobedov, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, S. Seletskiy, V.V. Smaluk, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, S. Verdú-Andrés, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, W. Xu, A. Zaltsman, W. Zhang
    BNL, Upton, New York, USA
  • S.V. Benson, J.M. Grames, F. Lin, T.J. Michalski, V.S. Morozov, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • K.E. Deitrick, C.M. Gulliford, G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • T. Satogata
    ODU, Norfolk, Virginia, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by BSA, LLC under Contract No. DE-SC0012704, by JSA, LLC under Contract No. DE-AC05-06OR23177, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The design of the electron-ion collider EIC to be constructed at Brookhaven National Laboratory has been continuously evolving towards a realistic and robust design that meets all the requirements set forth by the nuclear physics community in the White Paper. Over the past year activities have been focused on maturing the design, and on developing alternatives to mitigate risk. These include improvements of the interaction region design as well as modifications of the hadron ring vacuum system to accommodate the high average and peak beam currents. Beam dynamics studies have been performed to determine and optimize the dynamic aperture in the two collider rings and the beam-beam performance. We will present the EIC design with a focus on recent developments.
 
poster icon Poster WEPAB005 [2.095 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB005  
About • paper received ※ 14 May 2021       paper accepted ※ 22 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB006 EIC Crab Cavity Multipole Analysis 2589
 
  • Q. Wu, Y. Luo, B.P. Xiao
    BNL, Upton, New York, USA
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • J.A. Mitchell
    CERN, Geneva, Switzerland
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Crab cavities are specialized RF devices designed for colliders targeting high luminosities. It is a straightforward solution to retrieve head-on collision with crossing angle existing to fast separate both beams after collision. The Electron Ion Collider (EIC) has a crossing angle of 25 mrad, and will use local crabbing to minimize the dynamic aperture requirement throughout the rings. The current crab cavity design for the EIC lacks axial symmetry. Therefore, their higher order components of the fundamental deflecting mode have a potential of affecting the long-term beam stability. We present here the multipole analysis and preliminary particle tracking results from the current crab cavity design.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB006  
About • paper received ※ 18 May 2021       paper accepted ※ 25 June 2021       issue date ※ 16 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB008 Numerical Noise Study in EIC Beam-Beam Simulations 2592
 
  • D. Xu, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo, C. Montag
    BNL, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  In the Electron-Ion Collider (EIC) design, a flat beam collision scheme is adopted to achieve 1e34 luminosity. We found that the vertical growth of the proton beam is much larger than of the round beam. In this article we present the numerical noise study about the number of macroparticles, the electron slice number, and the electron bunch length. Both weak-strong and strong-strong simulation methods are used. It turns out the proton emittance growth in the strong-strong simulation mainly comes from the numberical noise. This study helps us to perform beam-beam simulation correctly for EIC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB008  
About • paper received ※ 17 May 2021       paper accepted ※ 31 August 2021       issue date ※ 31 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB009 Study of Harmonic Crab Cavity in EIC Beam-Beam Simulations 2595
 
  • D. Xu, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo, C. Montag
    BNL, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  In the Electron-Ion Collider (EIC) design, crab cavities are adopted to compensate the geometric luminosity loss from the crossing angle. From previous studies, higher-order synchro-betatron resonances are excited since the hadron beam is long and the crossing angle is large. To reduce the luminosity degradation rate, different combinations of harmonic crab cavities are studied with both weak-strong and strong-strong simulation methods. The frequency map analysis (FMA) is also used for comparison. This study helps determine the crab cavity parameters for the future EIC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB009  
About • paper received ※ 17 May 2021       paper accepted ※ 23 June 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB010 Full Range Tune Scan Studies Using Graphics Processing Units with CUDA in EIC Beam-Beam Simulations 2598
 
  • D. Xu, Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo, C. Montag
    BNL, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The hadron beam in the Electron-Ion Collider (EIC) suffers high order betatron and synchro-betatron resonances. In this paper, we present a weak-strong full range (0.0~0.5) fractional tune scan with a step size as small as 0.001. Multiple Graphics Processing Units (GPUs) are used to speed up the simulation. A code parallelized with MPI and CUDA is implemented. The good tune region from weak-strong scan is further checked by the self-consistent strong-strong simulation. This study provides beam dynamics guidance in choosing proper working points for the future EIC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB010  
About • paper received ※ 17 May 2021       paper accepted ※ 23 June 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB252 Transient Beam-Beam Effect During Electron Bunch Replacement in the EIC 3228
 
  • J. Qiang
    LBNL, Berkeley, California, USA
  • M. Blaskiewicz, Y. Luo, C. Montag, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
 
  The high luminosity, high polarization electron-ion collider (EIC) will provide great opportunities in nuclear physics study. In order to maintain high polarization, the electron beam will be replaced every few minutes during the collider operation. This frequent replacement of electron beams can affect proton beam quality during the collision. In this paper, we report on the study of the transient effect of electron beam replacement on proton beam emittance growth through strong-strong beam-beam simulation. The effect of electron beam injection imperfection will be included in the study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-WEPAB252  
About • paper received ※ 17 May 2021       paper accepted ※ 21 June 2021       issue date ※ 02 September 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB015 Studies of the Imperfection in Crab Crossing Scheme for Electron-Ion Collider 3784
 
  • Y. Hao, J.S. Berg, D. Holmes, Y. Luo, C. Montag
    BNL, Upton, New York, USA
  • V.S. Morozov
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
  • D. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Crab crossing scheme is the essential scheme that accommodates large crossing angle without loss of luminosity in the design of Electron-Ion collider (EIC). The ideal optics and phase advances of the crab cavity pair are set to create a local crabbing bump in the interaction region (IR). However, there are always small errors in the actual lattice of IR. In this article, we will present the simulation and analytical studies on the imperfections in the crab crossing scheme in the EIC design. The tolerance of the imperfection and the possible remedies can be concluded from these studies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB015  
About • paper received ※ 17 May 2021       paper accepted ※ 16 July 2021       issue date ※ 12 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB028 Beam-Beam Related Design Parameter Optimization for the Electron-Ion Collider 3808
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The design luminosity goal for the Electron-Ion Collider (EIC) is 1e34 cm-2s−1. To achieve such a high luminosity, the EIC design adopts high bunch intensities, flat beams at the interaction point (IP) with a small vertical β*-function, and a high collision frequency, together with crab cavities to compensate the geometrical luminosity loss due to the large crossing angle of 25mrad. In this article, we present our strategies and approaches to obtain the design luminosity by optimizing some key beam-beam related design parameters. Through our extensive strong-strong and weak-strong beam-beam simulations, we found that beam flatness, electron and proton beam size matching at the IP, electron and proton working points, and synchro-betatron resonances arising from the crossing angle collision play a crucial role in proton beam size growth and luminosity degradation. After optimizing those parameters, we found a set of beam-beam related design parameters to reach the design luminosity with an acceptable beam-beam performance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB028  
About • paper received ※ 17 May 2021       paper accepted ※ 28 July 2021       issue date ※ 25 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB029 Dynamic Aperture Evaluation for the Hadron Storage Ring in the Electron-Ion Collider 3812
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • Y. Hao, D. Xu
    FRIB, East Lansing, Michigan, USA
  • H. Huang
    ODU, Norfolk, Virginia, USA
  • V.S. Morozov, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC) is aiming at a design luminosity of 1e34 cm-2s−1. To maintain such a high luminosity, both beams in the EIC need an acceptable beam lifetime in the presence of the beam-beam interaction. For this purpose, we carried out weak-strong element-by-element particle tracking to evaluate the long-term dynamic aperture for the hadron ring lattice design. We improved our simulation code SimTrack to treat some new lattice design features, such as radially offset on-momentum orbits, coordinate transformations in the interaction region, etc. In this article, we will present the preliminary dynamic aperture calculation results with β*- function scan, radial orbit shift, crossing angle collision, and magnetic field errors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB029  
About • paper received ※ 17 May 2021       paper accepted ※ 01 September 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB174 T-BMT Spin Resonance Tracker Code for He3 with Six Snakes 4101
 
  • V.H. Ranjbar, H. Huang, Y. Luo, F. Méot, V. Ptitsyn
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy .
Polarization lifetime for He3 using two and six snakes are studied using the T-BMT Spin Resonance Tracker code. This code integrates a reduced spinor form of the T-BMT equation including only several spin resonances and the kinematics of synchrotron motion. It was previously benchmarked against RHIC polarization lifetime under the two snake system *.
* Phys. Rev.Accel. Beams 22 (2019) 9, 091001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2021-THPAB174  
About • paper received ※ 20 May 2021       paper accepted ※ 02 July 2021       issue date ※ 28 August 2021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)