Keyword: closed-orbit
Paper Title Other Keywords Page
MOPGW006 Long Range Beam Beam: Towards Faster Computations optics, interaction-region, lattice, betatron 72
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  We outline some features of a program of study toward faster computation of the cumulative effect of a sequence of beam-beam interactions across the interaction region.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW006  
About • paper received ※ 23 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW094 First Machine Developments Result with HL-LHC Crab Cavities in the SPS cavity, proton, luminosity, diagnostics 338
 
  • L.R. Carver, A. Alekou, F. Antoniou, H. Bartosik, T. Bohl, R. Calaga, M. Carlà, T.E. Levens, G. Papotti
    CERN, Meyrin, Switzerland
  • A. Alekou, R.B. Appleby, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • G. Burt
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Burt, J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Crab cavities are a critical component within the High Luminosity upgrade project for the Large Hadron Collider (HL-LHC). It is foreseen to use crab cavities in order to compensate the geometric luminosity reduction factor (reduction of the luminous region at the Interaction Point [IP]) due to the beam crossing angle (required for minimizing the impact of the long range beam-beam effects on the single particle beam dynamics) and increase the number of collisions per bunch crossing. In 2018 the first beam tests of crab cavities with protons were performed in the Super Proton Synchrotron (SPS) at CERN. Two vertical superconducting cavities of the Double Quarter Wave (DQW) type were fabricated and installed in the SPS to verify some key components of the cavity design and operation. This paper will present some of the first results relating to the proton beam dynamics in the presence of crab cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW094  
About • paper received ※ 25 April 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGW097 SOLEIL Storage Ring Upgrade Performance in Presence of Lattice Imperfections lattice, quadrupole, sextupole, dipole 350
 
  • A. Vivoli, A. Bence, P. Brunelle, A. Gamelin, L. Hoummi, A. Loulergue, L.S. Nadolski, R. Nagaoka, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  The design for the upgrade of the SOLEIL third generation light source is progressing. At the present stage, different lattices are evaluated as possible candidates for the storage ring upgrade and an important factor for the comparison of their performances is the robustness against lattice imperfections. The strategy for this study consists in defining a set of misalignments of the lattice elements and field errors of the magnets that are expected to be attained after the commissioning, applying them to the lattice models and correcting them using response matrix based techniques. A dedicated algorithm was developed in Accelerator Toolbox in order to accomplish this procedure and compare the different lattices. In this paper the results of this study at the current state are presented, including the considered lattice imperfections, the correction method applied and the final performance of the lattices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPGW097  
About • paper received ※ 14 May 2019       paper accepted ※ 17 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB062 nuSTORM Decay Ring lattice, quadrupole, resonance, emittance 716
 
  • J.-B. Lagrange
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • R.B. Appleby, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Precise neutrino cross section measurements and search for sterile neutrinos can be done with neutrino beams produced from muons decaying in a storage ring due to its precisely known flavour content and spectrum. In the proposed nuSTORM facility pions would be directly injected into a racetrack storage ring, where circulating muon beam would be captured. The storage ring has three options: a FODO solution with large aperture quadrupoles, a racetrack FFA (Fixed Field Alternating gradient) using the recent developments in FFAs and a hybrid solution of the two previous options. Machine parameters, linear optics design and beam dynamics of the hybrid solution are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB062  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRB081 Electron Beam’s Closed Orbit in the Crab Crossing Scheme of Future Electron-Ion Colliders electron, luminosity, cavity, simulation 762
 
  • Y. Hao, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  In crab-crossing collision geometry the closed orbit of the electron beam will be altered by the beam-beam interaction and the tilted head and tail of the ion beam. We will present the linear model to determine the closed orbit and compare with the simulation. Also, the relation of the closed orbit and the synchro-betatron resonance will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPRB081  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS040 Beta Beating and Coupling Correction of the ILSF Storage Ring coupling, lattice, quadrupole, alignment 946
 
  • A.M. Mash’al, E. Ahmadi, S. Dastan, J. Rahighi
    ILSF, Tehran, Iran
  • F.D. Dabbagh Kashani
    IUST, Narmac, Tehran, Iran
 
  The Iranian Light Source Facility (ILSF) is a 3 GeV synchrotron radiation facility, which is in the design stage. Inevitable errors like imperfection of magnetic field and misalignment of magnets will introduce various destructive effects on the performance of the machine. The possibility of correcting the errors should be thoroughly examined before settling the design. In this paper, the correction process of beta beating and coupling with LOCO is described. The rms beta beating in horizontal and vertical planes after correction are reduced to 1% and 2% respectively. The average coupling ratio of lattice for 100 random error distribution is corrected to 0.2%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS040  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS045 The Betatron Equation with the Synchro-Betatron Coupling Term and Suppression of the Coupled Bunch Mode synchrotron, betatron, coupling, dipole 957
 
  • K. Jimbo
    Kyoto University, Kyoto, Japan
 
  The synchrotron oscillation, which is both longitudinal and horizontal oscillations, occurs under a constant longitudinal velocity of revolving particle. The synchrotron and betatron equations for revolving particles are derived from the improved Hamiltonian. The betatron equation accompanys the shinchro-betatron resonant coupling term. The coherent synchrotron oscillation frequency of the bunch is defined from the integrated phase. Taking advantage of the resonant coupling term, an experiment to suppress magnetically the destabilized coupled-bunch mode of the synchrotron oscillation is proposed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS045  
About • paper received ※ 17 April 2019       paper accepted ※ 21 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS068 Beam Commissioning Experience of CSNS/RCS injection, MMI, quadrupole, betatron 1012
 
  • S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
 
  The China Spallation Neutron Source (CSNS) is an accelerator-based science facility. CSNS is designed to accelerate proton beam pulses to 1.6 GeV kinetic energy, striking a solid metal target to produce spallation neutrons. CSNS has two major accelerator systems, a linear accelerator (80 MeV Linac) and a 1.6 GeV rapid cycling synchrotron (RCS). The Beam commissioning of CSNS/RCS has been commissioned recently. Beam had been accelerated to 1.6 GeV at CSNS/RCS on January 18, 2018 with the injection energy of 80 MeV. The machine parameters are measured and optimized. The beam power is increased step by step. The beam power achieved 50kW in January, 2019. In this paper, the commissioning experiences are introduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS068  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTS113 Sensitivity Analyses of All-Electric Storage Ring Designs alignment, storage-ring, proton, FEM 1148
 
  • M.J. Syphers, A. Narayanan
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work supported by the National Science Foundation Grant 1623691.
Future searches of electric dipole moments (EDMs) of fundamental particles can require electrostatic storage rings operating at the particle’s "magic momentum" whereby spin precessions out of the plane of the particle motion would be governed in principle only by the presence of an EDM. An EDM search for the proton, for example, requires a momentum of approximately 700 MeV/c and thus implies a half-kilometer circumference, where relatively modest electric fields are assumed. As no all-electric ring on this scale has been constructed before, the ability to produce precise radial fields for establishing a central orbit and precise electrostatic focusing fields about that orbit requires attention. Results of initial investigations into the feasibility of designing a proper system and the sensitivities of such a system to placement, mis-powering errors and other requirements on realistic electrostatic elements will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-MOPTS113  
About • paper received ※ 09 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW039 Error Study and Correction of Hefei Advanced Light Source lattice, optics, quadrupole, coupling 1492
 
  • D.R. Xu, Z.H. Bai, W. Li
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Hefei Advanced Light Source (HALS) is a future diffraction limited storage ring. The machine performance under all kinds of magnet errors is a vital component in physical design. In this paper, we present our work on the closed orbit correction, the linear beam optics compensation and the coupling control in HALS. After correction, the dynamical aperture can suffice the injection scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW039  
About • paper received ※ 23 April 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW076 Early Commissioning Simulation of the Diamond Storage Ring Upgrade MMI, simulation, optics, quadrupole 1577
 
  • H. Ghasem, M. Apollonio, R. Bartolini, J.P. Kennedy, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  A low beam emittance lattice has been designed for up-grade of the Diamond storage ring. Due to the use of strong focusing elements and rather small vacuum cham-ber and considering the required short dark time, commis-sioning of the designed storage ring becomes very chal-lenging. This paper briefly explains the progress of early commissioning simulations of the storage ring, gives the required engineering tolerances, presents the first simula-tion results and discusses the non-linear beam dynamics (NLBD) issues after successful commissioning with and without insertion devices (IDs).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW076  
About • paper received ※ 13 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPGW090 Experimental Tests of the Automated APS-U Commissioning Algorithm at APS MMI, lattice, sextupole, simulation 1615
 
  • V. Sajaev
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357
APS Upgrade (APS-U) will feature hybrid seven-bend achromat lattice with very strong focusing elements and relatively small vacuum chamber aperture. Achieving design lattice parameters during commissioning will need to be accomplished quickly in order to minimize dark time for APS users. The paper will describe the automated start-to-end lattice commissioning algorithm starting with the first-turn trajectory correction and ending with the lattice correction. It will then show simulation results of the APS-U commissioning, and finally present results of the experimental tests of the commissioning at the existing APS.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-TUPGW090  
About • paper received ※ 15 May 2019       paper accepted ※ 23 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW058 Orbit Correction With Machine Learning lattice, storage-ring, simulation, coupling 2608
 
  • D.J. Xiao, C.P. Chu, Y.S. Qiao
    IHEP, Beijing, People’s Republic of China
 
  Orbit correction is usually an important task in the operation of accelerators. In practice, due to various errors, many devices can not operate in ideal state. By correcting the errors of magnets with corrector magnets, the beam can return to the correct position to ensure the stable operation of the accelerator. In the process of orbit correction, inaccurate BPM output will lead to incorrect correction magnet strength setting, so that the orbit correction will be impacted. BPM may make mistakes in the process of signal acquisition and current conversion. A BPM anomaly detection and predict method based on machine learning and its using in orbit correction optimization is reported in this paper. This method does not need to observe the details of BPM system, electronics technology and so on. It can monitor and predict the BPM status directly by machine learning with the information of the beam inferred from BPM and others, and optimize the orbit correction.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW058  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGW090 Emittance Evolution of Low Energy Antiproton Beams in the Presence of Deceleration and Cooling emittance, electron, proton, antiproton 2697
 
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C. Carli, B. Dupuy, D. Gamba
    CERN, Geneva, Switzerland
  • J.R. Hunt, J. Resta-López, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The commissioning of the Extra Low Energy Antiproton (ELENA) ring has been completed before the start of the second long shutdown (LS2) at CERN. First beams to an experiment in a new experimental zone have as well already been delivered. ELENA will begin distributing 100 keV cooled antiproton beams to all antimatter experiments in 2021. This contribution presents measurements made using a novel scraping algorithm capable of determining the emittance of non-Gaussian beams in the presence of dispersive effects. The emittance is sampled during various sections of the ELENA deceleration cycle, investigating the efficiency of the electron cooler and extracting additional information from the beam. The electron cooler is shown to effectively reduce the transverse phase space after blow-up during deceleration. The beam is characterised before extraction for the purpose of tracking and optimisation of the new electrostatic transfer lines currently being installed. Finally, the application of the scraping algorithm to other machines with a scraper located in a dispersive region is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPGW090  
About • paper received ※ 14 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS005 Long Range Beam-Beam Tune Shifts & Wire Compensation site, beam-beam-effects, dipole, quadrupole 3092
 
  • S.R. Koscielniak
    TRIUMF, Vancouver, Canada
 
  The weak-strong model subjects the test particle in the weak beam to transverse impulses from the strong beam, resulting in betatron tune shifts. We give analytic formulae for small amplitude and asymptotic shifts for three cases: short-range, long-range, and wire compensation; and optimize the latter to minimize the non-linear tune spreads.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS005  
About • paper received ※ 19 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS062 Zgoubi Status: Improved Performance, Features, and Graphical Interface lattice, interface, linac, pick-up 3271
 
  • D.T. Abell, P. Moeller, R. Nagler, B. Nash, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • I.B. Beekman
    ParaTools, Inc., Eugene, Oregon, USA
  • F. Méot
    BNL, Upton, Long Island, New York, USA
  • D.W.I. Rouson
    Sourcery Institute, Oakland, California, USA
 
  Funding: This work was supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics under Award No. DE-SC0017181.
The particle tracking code Zgoubi * has been used for a broad array of accelerator design studies, including FFAGs and EICs. Zgoubi is currently being used to evaluate the spin polarization performance of proposed designs for both JLEIC ** and eRHIC ***, and to prepare for commissioning the CBETA BNL-Cornell FFAG return loop ERL ****. We describe our on-going work on several fronts, including efforts to parallelize Zgoubi using new features of Fortran 2018 *****, and a new implementation of Zgoubi’s particle update algorithm. We also describe a new, web-based graphical interface for Zgoubi.
* F. Méot, FERMILAB-TM-2010, 1997
** J. Martinez-Marin et al., IPAC18, MOPMF004
*** V.H. Ranjbar et al., IPAC18, MOPMF016
**** F. Méot et al., NIM-A 896:60, 2018
***** wg5-fortran.org/f2018.html
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS062  
About • paper received ※ 15 May 2019       paper accepted ※ 20 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTS105 Simulation of Sirius Booster Commissioning MMI, injection, booster, simulation 3366
 
  • M.B. Alves, L. Liu, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is the new 3 GeV fourth-generation low emittance light source under construction at the Brazilian Synchrotron Light Laboratory. In order to study strategies forthe commissioning, different scenarios were studied by tracking simulations on lattice models with realistic alignment and magnet excitation errors, taking into account the finite precision of the beam diagnostic devices. We developed a commissioning algorithm that provides an efficient adjustment of the on-axis injection parameters, trajectory and closed orbit corrections and tuning of the RF parameters. With this algorithm it was possible to obtain a stable beam for thousands of turns in all the random machines simulated. The algorithms allows for partially automated commissioning procedures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2019-WEPTS105  
About • paper received ※ 15 May 2019       paper accepted ※ 22 May 2019       issue date ※ 21 June 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)