Keyword: closed-orbit
Paper Title Other Keywords Page
MOPC158 RF Capture of a Beam with Charge-exchanging Multi-turn Injection injection, simulation, acceleration, linac 454
 
  • T. Uesugi, Y. Ishi, Y. Kuriyama, J.-B. Lagrange, Y. Mori, R. Nakano, T. Planche, B. Qin, E. Yamakawa
    KURRI, Osaka, Japan
  • Y. Niwa, K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
 
  Funding: This work was supported by MEXT of Japan in the framework of a task entitled ”Research and Development for an Accelerator-Driven Sub-critical System Using an FFAG Accelerator”.
In the fixed field alternating gradient (FFAG) synchrotron in Kyoto university research reactor Institute (KURRI), charge exchange injection was adopted since 2011. The charge stripping foil is located on the closed orbit of the injection energy, and no bump orbit system is used. Instead, the injected beam escapes from the stripping foil according to the closed-orbit shift due to acceleration. In this scheme, it is important to minimize the number of foil hitting, which causes emittance growth and foil heating. In this paper, the rf capture is studied by means of simulation.
 
 
MOPS006 Beam Tilt due to Transverse Wakefields for DAΦNE, SuperB, KEKB and SuperKEKB impedance, wakefield, collider, vacuum 601
 
  • D.M. Zhou, K. Ohmi
    KEK, Ibaraki, Japan
  • A. Chao
    SLAC, Menlo Park, California, USA
 
  When a beam bunch traverses a transverse impedance, the bunch head generates a transverse wakefield that kicks the bunch tail, generating a betatron motion of the tail relative to the head. In a storage ring, in a steady state, this kick to the bunch tail produces a transverse closed orbit (e.g. in the y-direction) of the bunch tail relative to the bunch head, which means the beam now has a y-z tilt. Such beam tilt due to transverse wakefields may cause a loss of luminosity in storage ring colliders or loss of brightness in light sources. In this paper, we present a preliminary study of the beam tilt effect for the colliders DAΦNE, SuperB, KEKB and SuperKEKB.  
 
TUPC025 Calibration Errors in the Cavity Beam Position Monitor System at the ATF2 cavity, radio-frequency, lepton, simulation 1051
 
  • F.J. Cullinan, S.T. Boogert, N.Y. Joshi, A. Lyapin
    JAI, Egham, Surrey, United Kingdom
 
  It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.  
 
TUPC046 Alignment Tolerances for Vertical Emittance emittance, quadrupole, lattice, dipole 1102
 
  • K.P. Wootton, R.P. Rassool, G. Taylor
    The University of Melbourne, Melbourne, Australia
  • M.J. Boland, R.T. Dowd, G. LeBlanc, Y.E. Tan
    ASCo, Clayton, Victoria, Australia
  • Y. Papaphilippou
    CERN, Geneva, Switzerland
 
  Alignment tolerances for the CLIC main damping ring magnetic lattice elements are presented. Tolerances are defined by the design equilibrium vertical emittance of 1 pm rad. The sensitivity of the uncorrected lattice to magnet misalignments is presented. Misalignments considered included quadrupole vertical offsets and rolls, sextupole vertical offsets, and main dipole rolls. Seeded simulations were conducted in MAD-X, and compared with expectation values calculated from theory. The lattice was found to be sensitive to betatron coupling as a result of sextupole vertical offsets in the arcs. Alignment tolerances, BPM and corrector requirements are presented also. For the same misalignment types, the equilibrium emittance of the corrected lattice is simulated. These are compared with expectation values calculated from theory. The vertical alignment tolerance of arc sextupoles is again demanding.  
 
TUPC063 Energy Verification in Ion Beam Therapy proton, simulation, synchrotron, ion 1141
 
  • F. Moser
    ATI, Wien, Austria
  • M. Benedikt, U. Dorda
    EBG MedAustron, Wr. Neustadt, Austria
 
  Funding: Austrian Federal Ministry for Science and Research, CERN Technology Doctoral Student Program
The adoption of synchrotrons for medical applications necessitates a comprehensive on-line verification of all beam parameters, autonomous of common beam monitors. In particular for energy verification, the required precision of down to 0.1 MeV, in absolute terms, poses a special challenge regarding the betatron-core driven 3rd order extraction mechanism which is intended to be used at MedAustron. Two different energy verification options have been studied and their limiting factors were investigated: 1) A time-of-flight measurement inside the synchrotron, limited by the orbit circumference information and measurement duration as well as extraction uncertainties. 2) A calorimeter-style system in the extraction line, limited by radiation hardness and statistical fluctuations. The paper discusses in detail the benefits and specific aspects of each method.
 
 
WEPC053 Crossing of Depolarizing Resonances in Circular Electron Accelerators resonance, polarization, electron, quadrupole 2133
 
  • W. Hillert, A. Balling, O. Boldt, A. Dieckmann, F. Frommberger
    ELSA, Bonn, Germany
 
  Funding: Supported by the German Research Foundation (DFG) through SFB/TR 16
In flat electron storage rings, only the vertical component of the beam polarization is preserved. During acceleration, the crossing of several depolarizing resonances may cause severe beam depolarization. Even in case of fast ramping speeds of up to 6 GeV/sec, first order effects like imperfection and intrinsic resonances have to be compensated by dedicated measures. At the accelerator facility ELSA, schemes like fast tune jumping and harmonic orbit correction are successfully applied on the fast energy ramp up to 3.2 GeV. Characteristics of the setup as well as the optimization efforts to improve the resonance compensation will be reported in detail.
 
 
WEPC055 Beam Orbit and Power Converter Stability at the CR emittance, dipole, power-supply, antiproton 2139
 
  • A. Dolinskii, C. Dimopoulou, O.E. Gorda, S.A. Litvinov, F. Nolden, M. Steck, H. Weick
    GSI, Darmstadt, Germany
 
  For the isochronous mode operation of the CR with reference to have good properties of the mass measurements we study the sources of the beam orbit fluctuation and as consequence power converter requirements for the CR operated at BR=13 Tm. This papaer presents a summary of the different factors causing beam orbit variation, which leads to reduction of the mass measurements precision. The requirements to the power converters have been addressed.  
 
WEPC077 Beam Based Measurements with the Modified Wigglers in DAΦNE wiggler, octupole, multipole, simulation 2196
 
  • S. Bettoni
    CERN, Geneva, Switzerland
  • A. Drago, S. Guiducci, C. Milardi, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma), Italy
 
  A novel idea to minimize the odd high order non-linearities in periodic magnets has been presented in other articles in the past. The optimization of this method on the wigglers of the main rings in DAΦNE has been performed by means of multipolar and tracking analysis. After the magnetic measurements on a spare wiggler confirmed the magnetic model used to optimize the DAΦNE wigglers, all the insertion devices in the main rings have been modified accordingly. In fall last year tune variation measurements as a function of closed orbit bumps around the wigglers confirmed the validity of the method. In this paper the beam based measurement results with the new configuration are discussed and compared with those obtained in the previous configurations.  
 
WEPC079 Beta-beating in the Effective Model of the LHC Using PTC optics, alignment, injection, quadrupole 2202
 
  • M.C. Alabau Pons, F. Schmidt, R. Tomás
    CERN, Geneva, Switzerland
  • E.H. Maclean
    JAI, Oxford, United Kingdom
 
  An effective model of the LHC optics has been developed based on measurements of magnetic field, alignment errors and closed orbit. This model utilizes the Polymorphic Tracking Code with MAD-X as front-end to allow the inclusion of harmonics to an arbitrary order in thick lattice elements. Beta-beating calculations have been performed with this model at injection optics and at 3.5 TeV squeezed optics to 3.5 m beta-function at the interaction point. The model predictions are in remarkable agreement with the measurements performed in the 2010 LHC commissioning run.  
 
WEPC081 Beam-Beam Induced Orbit Effects at LHC luminosity, simulation, beam-beam-effects, collider 2208
 
  • M. Schaumann, R. Alemany-Fernandez
    CERN, Geneva, Switzerland
 
  For high bunch intensities the beam-beam force is strong enough to expect orbit effects if the two beams do not collide head-on but with a crossing angle or with a given offset. As a consequence the closed orbit changes. The closed orbit of an unperturbed machine with respect to a machine where the beam-beam force becomes more and more important has been studied and the results are presented in this paper.  
 
WEPC104 Vicky : A Computer Code for Use in the Design and Simulation of Particle Accelerators dynamic-aperture, sextupole, kicker, quadrupole 2256
 
  • F. Iazzourene
    ELETTRA, Basovizza, Italy
 
  Vicky is a computer code under development for designing and simulating particle accelerators. Like other existing codes, the features include machine imperfections, closed orbit correction, Twiss functions matching, chromaticity evaluation and correction, particle tracking and so on. The goal is to give the users a friendly graphical interface with widgets to perform the wished tasks, for example to plot the orbit, the Twiss functions, the tune diagram, the dynamic aperture and so on, to select and read an input file describing the considered lattice, to perform the Twiss functions matching, a closed orbit correction and so on. The code provides a description of the particle motion by 10 parameters: four beta-functions, four alpha-functions and two phase advances, that is a 4*4 generalized transverse coupling, together with an emphasis on the treatment of the complex 3D magnetic fields of the undulators used in today’s modern synchrotron radiation facilities. The code is written in C++. It uses the free packages QT for the online plots and the graphical user interface and IT++ for the mathematics. The present status and some results of its application will be presented.  
 
WEPC128 Application of Dynamical Maps to the FFAG EMMA Commissioning* lattice, simulation, acceleration, target 2304
 
  • Y. Giboudot, R. Nilavalan
    Brunel University, Middlesex, United Kingdom
  • A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: Work supported by the Engineering and Physical Sciences Research Council, UK.
The lattice of the Non Scaling FFAG EMMA has four degrees of freedom (strengths and transverse positions of each of the two quadrupoles in each periodic cell). Dynamical maps computed from an analytical representation of the magnetic field may be used to predict the beam dynamics in any configuration of the lattice. An interpolation technique using a mixed variable generating function representation for the map provides an efficient way to generate the map for any required lattice configuration, while ensuring symplecticity of the map. The interpolation technique is used in an optimisation routine, to identify the lattice configuration most closely machine specified dynamical properties, including the variation of time of flight with beam energy (a key characteristic for acceleration in EMMA).
yoel.giboudot@stfc.ac.uk
 
 
WEPS011 Application of Orbit Response Matrix Method at CSNS/RCS lattice, dipole, alignment, simulation 2505
 
  • Y.W. An, S. Wang
    IHEP Beijing, Beijing, People's Republic of China
 
  The China Spallation Neutron Source(CSNS) consists of a low energy linac and a high energy Rapid Cycling Synchrotron(RCS). RCS accumulates 80MeV beam and accelerates to 1.6GeV with 25Hz repetition rate and the average extraction beam power is 100kW. For controlling beam loss, the closed orbit should be adjusted as flexible as possible. The orbit response matrix(ORM) method is applied to correct the closed orbit distortion in RCS. The simulation study was made by using the code Linear Optics from Closed Orbit(LOCO) for CSNS/RCS, and the results of simulation study are presented.  
 
WEPS076 Straight Scaling FFAG linac, emittance, vacuum, instrumentation 2682
 
  • J.-B. Lagrange, Y. Ishi, Y. Kuriyama, Y. Mori, T. Planche, B. Qin, T. Uesugi, E. Yamakawa
    KURRI, Osaka, Japan
  • K. Okabe
    University of Fukui, Faculty of Engineering, Fukui, Japan
  • A. Sardet, R. Wasef
    LPSC, Grenoble Cedex, France
 
  Recent developments in scaling fixed field alternating gradient (FFAG) accelerators have opened new ways for lattice design, with straight sections, and insertions like dispersion suppressors. An experiment to study straight sections and dispersion suppressors is under progress at KURRI.  
 
WEPS079 Serpentine Acceleration in Scaling FFAG acceleration, injection, proton, electron 2691
 
  • E. Yamakawa, Y. Ishi, Y. Kuriyama, J.-B. Lagrange, Y. Mori, R. Nakano, T. Planche, B. Qin, T. Uesugi
    KURRI, Osaka, Japan
  • K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
 
  A serpentine acceleration in scaling FFAG accelerator has been examined. In this scheme, high-energy and high-current beam can be obtained in non-relativistic energy region. Longitudinal hamiltonian is also derived analytically.  
 
WEPS086 Three-lens Lattices for Extending the Energy Range of Non-scaling FFAGs lattice, optics, synchrotron, quadrupole 2709
 
  • S.J. Brooks
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  In this paper it is found that a three-quadrupole focussing system can be morphed continuously through FFD, FDF and DFF variants and back again while maintaining stable optics and even keeping the two transverse tunes constant. This relates to non-scaling FFAGs, where the magnet gradients define both the focussing and the variation of the field with momentum as the closed orbit sweeps across it. A two-lens focussing system cannot change the sign of either gradient without becoming unstable, meaning non-scaling FFAGs built with such a lattice eventually encounter too large a magnetic field at low energies. However, a theoretical system of magnet field variations using three lenses, with a potentially unlimited energy range and fixed tunes is presented here.  
 
WEPS087 Dynamics of a Novel Isochronous Non-scaling FFAG lattice, acceleration, dynamic-aperture, simulation 2712
 
  • S.L. Sheehy
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
 
  Many non-scaling FFAG accelerator designs involve magnetic fields that cannot be described in popular accelerator design codes, and complex beam dynamics that require extremely accurate simulations. A recent design of a 1 GeV isochronous non-scaling FFAG is used to compare the codes COSY Infinity and ZGOUBI, both of which are commonly used in FFAG design. Results are presented for the comparison of basic beam dynamics and calculated dynamic aperture.  
 
THPC005 First Measurements with a Kicked Off Axis Bunch for Pseudo Single Bunch Mode Studies at SOLEIL kicker, single-bunch, storage-ring, synchrotron 2912
 
  • L.S. Nadolski, J.-P. Lavieville, P. Lebasque, A. Nadji, J.P. Ricaud, M.G. Silly, F. Sirotti
    SOLEIL, Gif-sur-Yvette, France
 
  At SOLEIL, the time resolved French community benefits of single bunch operation few weeks a year. Meanwhile most of the multi-bunch filling pattern based experiments are not possible due to the low photon flux. Following the pioneer work performed at ALS*, a new operation mode is under study at SOLEIL where the storage ring is filled up with a special hybrid mode: ¾ multibunch filling pattern and a single bunch with higher current in the last ¼. The so-called pseudo single bunch-filling pattern is obtained if the closed orbit of the single bunch is not the same as the one of the other bunches. Preliminary results are presented where the pinger magnet time impulse response has been significantly reduced while its frequency was increased from 3 Hz up to 1 kHz. This magnet is used as an additional corrector magnet to change only the single bunch closed orbit. First experimental results observed at one interested beamline are also discussed.
* S. Kwiatkowski et al., “'CAMSHAFT' Bunch Kicker Design for the ALS Storage Ring", Proc. of EPAC2006, THPLS114, p. 3547, (2006).
 
 
THPC061 Comparison of Linear Optics Correction Means at the SLS optics, quadrupole, betatron, storage-ring 3032
 
  • M. Aiba, M. Böge, J.T.M. Chrin, N. Milas, T. Schilcher, A. Streun
    PSI, Villigen, Switzerland
 
  The experimental determination of linear optics is a fundamental prerequisite to achieving a high performance storage ring. In order to further enhance SLS performance and to simulataneously reveal the limitations of the various techniques, we perform a systematic study of linear optics optimization using various independent methods. These include an analysis of the orbit reponse (LOCO), turn-by-turn data, and the response of the tune, whose correction is accomplished using the standard SLS procedure of varying the quadrupole strengths. A comparison of results from these procedures, which use fully independent observables, provides us with a valuable cross-check. For example, the betatron phase advances between BPMs, which is independent of BPM calibration, confirms the optics correction as determined from LOCO. The linear optics are hence better optimized, and these procedures, LOCO in particular, further serve to expose any previously hidden mis-calibration of parameters e.g. from BPMs and corrector magnets. Systematic errors from turn-by-turn data could also be vastly reduced by a better synchronization of the BPM triggers with the electron beam.  
 
THPC156 Performance of the PETRA III APPLE II Undulator undulator, multipole, storage-ring, optics 3254
 
  • J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer
    HZB, Berlin, Germany
  • K. Balewski, J. Keil, A. Schöps, M. Tischer
    DESY, Hamburg, Germany
 
  A 5m-long APPLE II undulator has been built in collaboration between Helmholtz-Zentrum Berlin and DESY Hamburg. Magnetic field measurements after the final shimming in the laboratory are presented. The device has been installed in the storage ring and machine studies have been performed. The tune shifts in the elliptical and the inclined mode are in agreement with predictions from theory. The dynamic field integrals have successfully been minimized in the storage ring with so-called L-shims (rectangular iron sheets) which are placed at the undulator center at the magnet edges.  
 
THPZ001 Spin Dynamic Tool Developments and Study Regarding the Super-B Project simulation, lattice, polarization, collider 3681
 
  • N. Monseu, J.-M. De Conto
    LPSC, Grenoble Cedex, France
  • F. Méot
    BNL, Upton, Long Island, New York, USA
  • U. Wienands
    SLAC, Menlo Park, California, USA
 
  The study of polarization is essential for e+/e- colliders like the SuperB machine. The ZGOUBI integrator is a good and universal tool for particle tracking as well as spin tracking, and takes into account all machine realistic aspects, like real fields, non-linearities, fringing fields or misalignments. We present ZGOUBI implementation and the methods carried out to estimate invariant spin field and beam polarization evolution on some simple models (for validation) and on SuperB, and we investigate for some specific polarization behavior.  
 
THPZ004 DAΦNE Tune-up for the KLOE-2 Experiment luminosity, background, wiggler, coupling 3687
 
  • C. Milardi, D. Alesini, M.E. Biagini, S. Bini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, T. Demma, E. Di Pasquale, G. Di Pirro, A. Drago, M. Esposito, L.G. Foggetta, A. Gallo, A. Ghigo, S. Guiducci, C. Ligi, S.M. Liuzzo, F. Marcellini, G. Mazzitelli, L. Pellegrino, M.A. Preger, L. Quintieri, P. Raimondi, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Zobov
    INFN/LNF, Frascati (Roma), Italy
  • S. Bettoni
    PSI, Villigen, Switzerland
 
  Funding: Work supported by the EuCARD research programme within the 'Assessment of Novel Accelerator Concepts' work package (ANAC-WP11).
In its continuous evolution DAΦNE, the Frascati lepton collider, is starting a new run for the KLOE-2 experiment, an upgraded version of the KLOE one. A new interaction region, based on the high luminosity Crab-Waist collision scheme, has been designed, built and installed. Several machine subsystems have been revised according to innovative design concepts in order to improve beam dynamics. Collimators and shieldings have been upgraded in order to minimize the background rates on the detector during coasting as well as injection operation. A wide measurement campaign has been undertaken to verify and quantify the effect of the modifications and to tune-up the collider in view of the 3 years long data-taking foreseen to deliver ~5 fb-1 to the experiment.
 
 
THPZ027 First Beam Results for a Collimator with In-jaw Beam Position Monitors collimation, alignment, proton, beam-losses 3747
 
  • D. Wollmann, O. Aberle, R.W. Assmann, A. Bertarelli, C.B. Boccard, R. Bruce, F. Burkart, M. Cauchi, A. Dallocchio, D. Deboy, M. Gasior, O.R. Jones, S. Redaelli, A. Rossi, G. Valentino
    CERN, Geneva, Switzerland
 
  With more than 100 collimators the LHC has the most complex collimation system ever installed in an accelerator. The beam-based setup time of the system was a non-negligible factor during the commissioning of the LHC. In addition if the particle orbit at a collimator goes out of tolerance, this collimator needs to be setup again. To reduce the required setup time for the collimation system and to obtain the tight tolerances required for the LHC operation with small beta* and high beam energy, a new collimator design is being developed that integrates a beam position monitor (BPM) into the jaws of the collimator. A prototype of such a phase-II LHC collimator was installed in the SPS at CERN for the 2010 run. In this paper we present the first experimental results from the beam tests performed.