07 Accelerator Technology
T21 Infrastructures
Paper Title Page
TUPS055 Organizing the ILC Technical Design Documentation 1656
 
  • L. Hagge, S. Eucker, B. List, N.J. Walker, N. Welle
    DESY, Hamburg, Germany
 
  The Global Design Effort (GDE) for the International Linear Collider (ILC) is currently preparing the Technical Design Report (TDR), which will be released at the end of 2012 and will serve as the basis for a decision process. The TDR will be written based on the Technical Design Documentation (TDD), which captures the entire design efforts, results and rationale, including e. g. parameter lists, specifications, CAD models and drawings, cost estimation, simulations and calculations, and summary reports. Formal review meetings help making the documentation complete, correct and consistent. The TDD is stored in an Engineering Data Management System (EDMS), which ensures that it remains accessible beyond the GDE in an organized way and at a well-defined location. The EDMS provides traceability (e. g. from design decisions to corresponding cost estimates), version management and change control. The poster presents the process and tools that were established for the organization of the TDD and provides an overview of the emerging documentation.  
 
TUPS057 Displacement of J-PARC Caused by Megaquake 1662
 
  • M.J. Shirakata, Y. Fujii, T. Ishii, Y. Shirakabe
    KEK, Ibaraki, Japan
  • H. Harada, S. Harjo, T. Iwahashi, S.I. Meigo, T. Morishita, N. Tani
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Accelerators, beam lines, and experimental halls located in the J-PARC site were displaced by the 2011 off the Pacific coast of Tohoku Earthquake happened on 11th March, whose magnitude was nine, and its following many aftershocks. Site-wide network of measurement points distributed on grounds, buildings, and magnets was surveyed by using GPS survey system, precise digital levels, and laser trackers. The effect from the megaquake was reported for each J-PARC components, such as LINAC, Rapid Cycling Synchrotron (RCS), Main Ring (MR), neutrino and hadron beam lines, and experimental halls.  
 
TUPS058 HiRadMat: A New Irradiation Facility for Material Testing at CERN 1665
 
  • I. Efthymiopoulos, S. Evrard, H. Gaillard, D. Grenier, C. Heßler, M. Meddahi, A. Pardons, C. Theis, P. Trilhe, H. Vincke
    CERN, Geneva, Switzerland
  • N. Charitonidis
    EPFL, Lausanne, Switzerland
 
  HiRadMat (High Irradiation to Materials) is a new facility under construction at CERN designed to provide high-intensity pulsed beams to an irradiation area where material samples as well as accelerator component assemblies can be tested. The facility uses a 440 GeV proton beam extracted from the CERN SPS with a pulse length of 7.2 μs,  to a maximum pulse energy of 3.4 MJ. In addition to protons, ion beams with an energy of  173.5 GeV/nucleon and a total pulse energy of 21 kJ can be used. The facility is expected to become operational in autumn 2011. The first tests will include candidate materials and prototype assemblies of LHC collimators foreseen to operate at the ultimate LHC beam powers. Experiments on beam windows and high-power target material options, such as tungsten powder, are also planned. The paper will describe the layout and design parameters for the facility and the way experiments can be operated. Ideas on online and post-irradiation tests and instrumentation will be outlined.  
 
TUPS059 SPS WANF Dismantling: A Large Scale-Decommissioning Project at CERN 1668
 
  • S. Evrard, Y. Algoet, N. Conan, D. DePaoli, I. Efthymiopoulos, S. Fumey, H. Gaillard, J.L. Grenard, D. Grenier, A. Pardons, E. Paulat, Y.D.R. Seraphin, M. Tavlet, C. Theis, H. Vincke
    CERN, Geneva, Switzerland
 
  The operation of the SPS (Super Proton Synchrotron) West Area Neutrino Facility (WANF) was halted in 1998. In 2010 a large scale-decommissioning of this facility was conducted. Besides CERN’s commitment to remove non-operational facilities, the additional motivation was the use of the installation (underground tunnels and available infrastructure) for the new HiRadMat facility, which is designed to study the impact of high-intensity pulsed beams on accelerator components and materials. The removal of 800 tons of radioactive equipment and the waste management according to the ALARA (As Low As Reasonably Achievable) principles were two major challenges. This paper describes the solutions implemented and the lessons learnt confirming that the decommissioning phase of a particle accelerator must be carefully studied as from the design stage.  
 
TUPS060 Designing, Integrating, and Coordinating Installation of MedAustron 1671
 
  • B. Nicquevert, C. Hauviller
    CERN, Geneva, Switzerland
  • M. Benedikt, B. Nicquevert
    EBG MedAustron, Wr. Neustadt, Austria
 
  Funding: CERN, Geneva, Switzerland EBG MedAustron, Wiener Neustadt, Austria
"Give me a layout good enough and a building to place it, and I will install your accelerator". To paraphrase Archimedes, this is the role attributed to Integration team in MedAustron project. Starting with the optics layout and a building sketch, the integration work consists of a series of activities, interlinked in a complex manner. First the design and integration of the accelerator: list items, define geometrical envelopes with interfaces, put them in position in CAD, identify conflicts, define input for items design and infrastructure. Then the various equipment is procured: verify and validate design data, follow-up manufacturing, fiducialize equipment, build supports. Lastly global installation: check equipped building, define survey framework, install and pre-align equipment on supports, move assemblies to their final location, survey actual position and adjust to theoretical position. The whole chain of operations from a layout to a real beam in MedAustron is illustrated. The help from item-driven data management is emphasized. Grouping all activities within a single team favors interactions between stakeholders and consistency of activities.
 
 
TUPS061 CERN Safety Alarm Monitoring 1674
 
  • H. Nissen, S. Grau
    CERN, Geneva, Switzerland
 
  The CERN Safety Alarm Monitoring system acquires safety alarms and safety information generated by CERN safety equipment such as fire and gas detectors, evacuation, emergency stops and other safety related systems, which are located in both surface and underground areas of CERN sites and accelerators. Currently there are 22170 alarms from 1025 safety equipments. This information is transmitted in a high priority and diversely redundant way to the CERN Safety Control Room for immediate intervention of the CERN Fire Brigade. The system was designed based on two main standards, the EN 50136 and IEC 61508 and was commissioned in 2003. In 2009 it was decided to launch a consolidation project in order to upgrade both hardware and software. The consolidation project includes deployment of a private CERN wide fiber optic TCP/IP network for the transmission of safety alarms, an upgrade of the SCADA software, a database upgrade and the replacement of all computers. In this paper the system is presented, the ongoing consolidating work is detailed and the middle and long term improvement plans for the system are described.  
 
TUPS062 The Ground Testing of TPS Ground System 1677
 
  • T.-S. Ueng, J.-C. Chang, C.K. Kuan, Y.-C. Lin
    NSRRC, Hsinchu, Taiwan
 
  A ground grid of 4 rings and 62 vertical electrodes has been constructed for the TPS storage ring. The ground resistance was designed to be smaller than 0.2 ohms in order to give a good protection of the TPS electrical facility and personnel. In order to match the building construction schedule the TPS ground grid has been installed about 1/6 segment of the construction project each period. The ground impedance of each segment was measured right after the installation. The ground grid with the diameter of 200 m of outside ring and its low impedance value, also the limit testing space, challenged the measurement of ground resistance. Several different methods of ground testing have been used and the measured results are compared each other. These methods include fall-of-potential method, slope method, intersecting curves method and the test-current-reversal method. The final TPS ground impedance will be measured and compared with the calculation from combining the previous several segment measurements. The actual TPS ground resistance should have a smaller value than expected.  
 
TUPS063 Power Saving Schemes in the NSRRC 1680
 
  • J.-C. Chang, Y.F. Chiu, J.-M. Lee, Y.-C. Lin, C.Y. Liu, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu, Taiwan
 
  National Synchrotron Radiation Research Center (NSRRC), Taiwan will complete the construction of the civil and utility system engineering of the Taiwan Photon Source (TPS) in the end of 2012. The power consumption of the TPS is estimated about 2.3 times of that of the existed Taiwan Light Source (TLS). To cope with increasing power requirement in the near future, we have been conducting several power saving schemes, which include power requirement control, optimization of chillers operation, application of heat pump, air conditioning system improvement, power factor improvement and the lighting system improvement.  
 
TUPS064 Construction Status of the Utility System for the 3GeV TPS Storage Ring 1683
 
  • J.-C. Chang, J.-R. Chen, Y.-C. Chung, C.K. Kuan, K.C. Kuo, J.-M. Lee, Y.-C. Lin, C.Y. Liu, I. Liu, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The construction of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) has been contracted out in the end of 2009. The whole construction of the utility system is scheduled to be completed in the end of 2012. Total budget of this construction is about four million dollars. The utility system includes the electrical power, cooling water, air conditioning, compressed air and fire control systems. The TPS construction site is located adjacent to TLS. Some areas of TPS and TLS are overlapped. Under tight schedule, limit budget and geographic constrains, it is a challenge to complete the utility system construction of TPS on time, on budget, and to specification. This paper presents some main issues and status of the utility system construction for the TPS storage ring.  
 
TUPS065 Design of the De-ionized Water Treatment for Taiwan Photon Source 1686
 
  • Z.-D. Tsai, W.S. Chan, C.K. Kuan
    NSRRC, Hsinchu, Taiwan
 
  This work presents the water treatment design of Taiwan Photon Source (TPS). The system design is influenced by supplied water quality, water quantity and the selected process scheme. The system is composed of a pretreatment, make-up, and points-of-use filtration systems. The pretreatment system consists of an active carbon tower, a normally cartridge filter and a reversed osmosis (RO) unit. Furthermore, the make-up system consists of an ultraviolent (UV) TOC reduction unit and a ion-exchange resin unit. Following the water treatment process, the proposed system can provide high quality de-ionized water whose resistivity is better than 10 MΩ-cm at 25±0.1 degree C and dissolved oxygen is less than 10 ppb.