Keyword: emittance
Paper Title Other Keywords Page
MOPKS015 Diagnostics Control Requirements and Applications at NSLS-II controls, diagnostics, feedback, injection 192
 
  • Y. Hu, L.R. Dalesio, K. Ha, O. Singh
    BNL, Upton, Long Island, New York, USA
 
  To measure various beam parameters such as beam position, beam size, circulating current, beam emittance, etc., a variety of diagnostic monitors will be deployed at NSLS-II. The Diagnostics Group and the Controls Group are working together on control requirements for the beam monitors. The requirements are originated from and determined by accelerator physics. An attempt of analyzing and translating physics needs into control requirements is made. The basic functionalities and applications of diagnostics controls are also presented.  
poster icon Poster MOPKS015 [0.142 MB]  
 
MOPMS029 The BPM DAQ System Upgrade for SuperKEKB Injector Linac linac, electron, positron, controls 389
 
  • M. Satoh, K. Furukawa, F. Miyahara, T. Suwada
    KEK, Ibaraki, Japan
  • T. Kudou, S. Kusano
    MELCO SC, Tsukuba, Japan
 
  The KEK injector linac provides beams with four different rings: a KEKB high-energy ring (HER; 8 GeV/electron), a KEKB low-energy ring (LER; 3.5 GeV/positron), a Photon Factory ring (PF; 2.5 GeV/electron), and an Advanced Ring for Pulse X-rays (PF-AR; 3 GeV/electron). For the three rings except PF-AR, the simultaneous top-up injection has been completed since April 2009. In the simultaneous top-up operation, the common DC magnet settings are utilized for the beams with different energies and amount of charges, whereas the different optimized settings of RF timing and phase are applied to each beam acceleration by using a fast low-level RF (LLRF) phase and trigger delay control up to 50 Hz. The non-destructive beam position monitor (BPM) is an indispensable diagnostic tool for the stable beam operation. In the KEK Linac, approximately nineteen BPMs with the strip-line type electrodes are used for the beam orbit measurement and feedback. In addition, some of them are also used for the beam energy feedback loops. The current DAQ system consists of the digital oscilloscopes (Tektronix DPO7104, 10 GSa/s). A signal from each electrode is analyzed with a predetermined response function up to 50 Hz. The beam position resolution of the current system is limited to about 0.1 mm because of ADC resolution. For the SuperKEKB project, we have a plan to upgrade the BPM DAQ system since the Linac should provide the smaller emittance beam. We will report on the system description of the new DAQ system and the results of performance test in detail.  
poster icon Poster MOPMS029 [3.981 MB]  
 
MOPMS035 A Beam Profiler and Emittance Meter for the SPES Project at INFN-LNL diagnostics, EPICS, software, ion 412
 
  • G. Bassato, A. Andrighetto, N. Conforto, M.G. Giacchini, J.A. Montano, M. Poggi, J.A. Vásquez
    INFN/LNL, Legnaro (PD), Italy
 
  The beam diagnostics system currently in use at LNL in the superconducting Linac has been upgraded for the SPES project. The control software has been rewritten using EPICS tools and a new emittance meter has been developed. The beam detector is based on wire grids, the IOC is implemented in a VME system running under Vxworks and the graphic interface is based on CSS. The system is now in operation in the SPES Target Laboratory for the characterization of beams produced by the new ion source.  
poster icon Poster MOPMS035 [0.367 MB]  
 
MOPMU025 The Implementation of the Spiral2 Injector Control System EPICS, controls, software, diagnostics 491
 
  • F. Gougnaud, J.F. Denis, J.-F. Gournay, Y. Lussignol, P. Mattei, R. Touzery
    CEA/DSM/IRFU, France
  • P. Gillette, C.H. Haquin
    GANIL, Caen, France
  • J.H. Hosselet, C. Maazouzi
    IPHC, Strasbourg Cedex 2, France
 
  The EPICS framework was chosen for the Spiral2 project control system [1] in 2007. Four institutes are involved in the command control: Ganil (Caen), IPHC (Strasbourg) and IRFU (Saclay) and LPSC (Grenoble), the IRFU institute being in charge of the Injector controls. This injector includes two ECR sources (one for deuterons and one for A/q= 3 ions) with their associated low-energy beam transport lines (LEBTs). The deuteron source is installed at Saclay and the A/q=3 ion source at Grenoble. Both lines will merge before injecting beam in a RFQ cavity for pre acceleration. This paper presents the control system for both injector beamlines with their diagnostics (Faraday cups, ACCT/DCCT, profilers, emittancemeters) and slits. This control relies on COTS VME boards and an EPICS software platform. Modbus/TCP protocol is also used with COTS devices like power supplies and Siemens PLCs. The Injector graphical user interface is based on Edm while the port to CSS BOY is under evaluation; also high level applications are developed in Java. This paper also emphasizes the EPICS development for new industrial VME boards ADAS ICV108/178 with a sampling rate ranging from 100 K Samples/s to 1.2 M Samples/s. This new software is used for the beam intensity measurement by diagnostics and the acquisition of sources.
[1] Overview of the Spiral2 control system progress E. Lécorché & al (Ganil/CAEN),this conference.
 
poster icon Poster MOPMU025 [1.036 MB]