Paper |
Title |
Page |
WEPKS014 |
NOMAD – More Than a Simple Sequencer |
808 |
|
- P. Mutti, F. Cecillon, A. Elaazzouzi, Y. Le Goc, J. Locatelli, H. Ortiz, J. Ratel
ILL, Grenoble, France
|
|
|
NOMAD is the new instrument control software of the Institut Laue-Langevin. A highly sharable code among all the instruments’ suite, a user oriented design for tailored functionality and the improvement of the instrument team’s autonomy thanks to a uniform and ergonomic user interface are the essential elements guiding the software development. NOMAD implements a client/server approach. The server is the core business containing all the instrument methods and the hardware drivers, while the GUI provides all the necessary functionalities for the interaction between user and hardware. All instruments share the same executable while a set of XML configuration files adapts hardware needs and instrument methods to the specific experimental setup. Thanks to a complete graphical representation of experimental sequences, NOMAD provides an overview of past, present and future operations. Users have the freedom to build their own specific workflows using intuitive drag-and-drop technique. A complete drivers’ database to connect and control all possible instrument components has been created, simplifying the inclusion of a new piece of equipment for an experiment. A web application makes available outside the ILL all the relevant information on the status of the experiment. A set of scientific methods facilitates the interaction between users and hardware giving access to instrument control and to complex operations within just one click on the interface. NOMAD is not only for scientists. Dedicated tools allow a daily use for setting-up and testing a variety of technical equipments.
|
|
|
Poster WEPKS014 [6.856 MB]
|
|
|
WEPMN025 |
A New Fast Triggerless Acquisition System For Large Detector Arrays |
935 |
|
- P. Mutti, M. Jentschel, J. Ratel, F. Rey, E. Ruiz-Martinez, W. Urban
ILL, Grenoble, France
|
|
|
Presently a common characteristic trend in low and medium energy nuclear physics is to develop more complex detector systems to form multi-detector arrays. The main objective of such an elaborated set-up is to obtain comprehensive information about the products of all reactions. State-of-art γ-ray spectroscopy requires nowadays the use of large arrays of HPGe detectors often coupled with anti-Compton active shielding to reduce the ambient background. In view of this complexity, the front-end electronics must provide precise information about energy, time and possibly pulse shape. The large multiplicity of the detection system requires the capability to process the multitude of signals from many detectors, fast processing and very high throughput of more that 106 data words/sec. The possibility to handle such a complex system using traditional analogue electronics has shown rapidly its limitation due, first of all, to the non negligible cost per channel and, moreover, to the signal degradation associated to complex analogue path. Nowadays, digital pulse processing systems are available, with performances, in terms of timing and energy resolution, equal when not better than the corresponding analogue ones for a fraction of the cost per channel. The presented system uses a combination of a 15-bit 100 MS/s digitizer with a PowerPC-based VME single board computer. Real-time processing algorithms have been developed to handle total event rates of more than 1 MHz, providing on-line display for single and coincidence events.
|
|
|
Poster WEPMN025 [15.172 MB]
|
|
|
WEPMS016 |
Network on Chip Master Control Board for Neutron's Acquisition |
1006 |
|
- E. Ruiz-Martinez, T. Mary, P. Mutti, J. Ratel, F. Rey
ILL, Grenoble, France
|
|
|
In the neutron scattering instruments at the Institute Laue-Langevin, one of the main challenges for the acquisition control is to generate the suitable signalling for the different modes of neutron acquisition. An inappropriate management could cause loss of information during the course of the experiments and in the subsequent data analysis. It is necessary to define a central element to provide synchronization to the rest of the units. The backbone of the proposed acquisition control system is the denominated master acquisition board. This main board is designed to gather together the modes of neutron acquisition used in the facility, and make it common for all the instruments in a simple, modular and open way, giving the possibility of adding new performances. The complete system also includes a display board and n histogramming modules connected to the neutrons detectors. The master board consists of a VME64X configurable high density I/O connection carrier board based on latest Xilinx Virtex-6T FPGA. The internal architecture of the FPGA is designed as a Network on Chip (NoC) approach. It represents a switch able to communicate efficiently the several resources available in the board (PCI Express, VME64x Master/Slave, DDR3 controllers and user's area). The core of the global signal synchronization is fully implemented in the FPGA, the board has a completely user configurable IO front-end to collect external signals, to process them and to distribute the synchronization control via the bus VME to the others modules involved in the acquisition.
|
|
|
Poster WEPMS016 [7.974 MB]
|
|
|
WEPMS019 |
Measuring Angle with Pico Meter Resolution |
1014 |
|
- P. Mutti, M. Jentschel, T. Mary, F. Rey
ILL, Grenoble, France
- G. Mana, E. Massa
INRIM, Turin, Italy
|
|
|
The kilogram is the only remaining fundamental unit within the SI system that is defined in terms of a material artefact (a PtIr cylinder kept in Paris). Therefore, one of the major tasks of modern metrology is the redefinition of the kilogram on the basis of a natural quantity or of a fundamental constant. However, any kilogram redefinition must approach a 10-8 relative accuracy in its practical realization. A joint research project amongst the major metrology institutes in Europe has proposed the redefinition of the kilogram based on the mass of the 12C atom. The goal can be achieved by counting in a first step the number of atoms in a macroscopic weighable object and, in a second step, by weighing the atom by means of measuring its Compton frequency vC. It is in the second step of the procedure, where the ILL is playing a fundamental role with GAMS, the high-resolution γ-ray spectrometer. Energies of the γ-rays emitted in the decay of the capture state to the ground state of a daughter nucleus after a neutron capture reaction can be measured with high precision. In order to match the high demand in angle measurement accuracy, a new optical interferometer with 10 picorad resolution and linearity over a total measurement range of 15° and high stability of about 0.1 nrad/hour has been developed. To drive the interferometer, a new FPGA based electronics for the heterodyne frequency generation and for real time phase measurement and axis control has been realized. The basic concepts of the FPGA implementation will be revised.
|
|
|
Poster WEPMS019 [6.051 MB]
|
|
|