WEPKS014

Proceedings of ICALEPCS2011, Grenoble, France

NOMAD - MORE THAN A SIMPLE SEQUENCER

P. Mutti, F. Cecillon, A. Elaazzouzi, Y. Le Goc, J. Locatelli, H. Ortiz, J. Ratel,
Institut Laue-Langevin, Grenoble, France

Abstract

NOMAD is the new instrument control software of the
Institut Laue-Langevin (ILL). A highly sharable code
among all the instruments’ suite, a user oriented design
for tailored functionality and the improvement of the
instrument team’s autonomy thanks to a uniform and
ergonomic user interface are the essential elements
guiding the software development. NOMAD implements
a client/server approach. The server is the core business
containing all the instrument methods and the hardware
drivers, while the GUI provides all the necessary
functionalities for the interaction between user and
hardware. All instruments share the same executable
while a set of XML configuration files adapts hardware
needs and instrument methods to the specific
experimental setup. Thanks to a complete graphical
representation of experimental sequences, NOMAD
provides an overview of past, present and future
operations. Users have the freedom to build their own
specific workflows using intuitive drag-and-drop
technique. A complete drivers’ database to connect and
control all possible instrument components has been
created, simplifying the inclusion of a new piece of
equipment for an experiment. A web application makes
available outside the ILL all the relevant information on
the status of the experiment. A set of scientific methods
facilitates the interaction between users and hardware
giving access to instrument control and to complex
operations within just one click on the interface.

INTRODUCTION

The Instrument Control Service (SCI) in close
collaboration with the ILL’s scientists has taken up the
challenge to redefine the way experiments are performed.
The initial part of the project has been dedicated to an
exciting discussion with our scientists and users to define
all the use-cases to be included in NOMAD. Such a
discussion brought the attention on the following use-
case:

UCI1: hardware installation. Hardware added to the
instrument needs to be incorporated into the software
control. We have detailed how a new electronic device
can be added dynamically to the control software.

UC2: instrument component setup. Once a new
hardware is added it needs to be configured. This use-case
takes into account the different roles that hardware
components can have on the instrument control.

UC3: instrument calibration. After the hardware is
correctly installed and configured, it needs to be
calibrated to ensure a correct functioning of the
instrument before performing an experiment. This may
involve proper PID settings, detector calibration, etc...

808

UC4: sample alignment. In certain cases, a sample
needs to be aligned. This is most commonly performed on
diffraction-type instruments in which the diffraction
pattern depends upon the orientation of the sample with
respect to the neutron beam. In other types of instruments
this alignment is sometimes known in advance but the
instrument still needs to be setup correctly depending on
the type of experiment being performed.

UCS: performing the experiment. This use-case
describes the general steps involved in the execution of an
experiment. It starts from the verification of the status of
the instrument to continue with the execution of pre-
defined list of commands. At the end of a well-defined
sequence, data are stored and a detailed report of all the
various steps undergone is produced.

All those different use-cases lead to the implementation
presented in the current paper.

ARCHITECTURE

The Nomad application is a two-tier client server
application [1]. Figure 1 shows a simplified component
diagram of the application

Server

The Nomad Server application is the part of the
program executing the main tasks required for the control
of the instruments. The server written in C++ [2] has three
main roles:

e Data provider: to provide the actual values of the
variables of the system (e.g. the properties of the
instrument).

e Plug-in container: to load, initialize and execute the
business logic of the instrument. The state of the
instrument is periodically updated by the reading of
the connected devices. The business layer is
organized into plug-ins separated into drivers (low
level layer) and controllers (high-level layer).

e Command sequencer: to process the requests of the
client. Those can be complex sequences of
instructions onto controllers. A client user can launch
batch processing by programming a combination of
for loops with parallel execution of commands for the
night.

The plug-in libraries are divided into controllers and
drivers. These are dynamic libraries loaded by the server.
They contain all the business code written for NOMAD
including all the available drivers and controllers. Some
controllers can be common to each instrument, but some
controllers are instrument specific. We also have different
levels of abstraction for controllers.

The controller and driver classes loaded by the plug-in
libraries describe an object-oriented model of classes.
Controller classes interact with controller or driver

Software technology evolution

Proceedings of ICALEPCS2011, Grenoble, France

<<application> >
Nomad Monitor

n, Y
Lse
v
<<library>> E
NomadCommandSystem
accessExecute

WEPKS014

<<libraries>> E

<<application> > E
Plugins .so

Web Spy Server

Figure 1: Simplified component diagram for the NOMAD application.

interfaces. We need to describe how we link the different
controller and driver objects. These configurations are
specific to each instrument. Two main configuration files,
the InstrumentConfig and HardwareConfig, list the
controllers and drivers required for a given instrument
and how they are linked together. Additional instrument
specific configuration files describes acquisition settings
or scheduler rules indicating which controllers can
execute tasks in parallel and which should be strictly
sequential.

The results of the data acquisition are stored into
several different file formats. ASCII data files contain all
the relevant information organized in a text format
following specific rules to be compatible with the existing
ILL’s data treatment programs. NeXus [3] files contain
binary and compressed data. Nexus is a common data
format share by neutron, x-ray and muon facilities. It is
based on the Hierarchical Data Format (HDF) developed
by U.S laboratories and extremely powerful for large data
sets. LIST-MODE files are pure binary containing, beside
a specific ILL header, the sequence of all detected events
and the associate time-stamp to provide a maximum of
flexibility to replay the experiment off-line.

NOMAD records all important instrument history
information in daily log files. The ASCII version is
directly accessible by the user via his favourite text editor.
The server includes in this file some additional debugging
information that can be helpful for the developers in case
of unexpected behaviour. NOMAD is also saving a XML
version of the log file. This can be accessed by the
NOMAD client application and provides additional
features to the user like filtering on specific actions and
calendar navigation.

All instrument parameters are permanently monitored
and stored into daily Survey XML files. Those data are
displayed by the NOMAD client application in a
dedicated plot window and the user is able to dynamically
select and visualise a specific set of system’s variable.

Software technology evolution

The server automatically notifies to the administrator or
to the users all errors occurred during the execution.

Client

The Nomad Client application written in Java [4] SWT
is designed to offer a practical Graphical User Interface
(GUI) for the user to control the instrument. A dedicated
effort has been made to provide an easy-to-use graphical
programming of complex sequences of instructions. The
NOMAD client application consists of three different
graphical views specifically designed to satisfy different
needs. The Hardware view is intended for the technical
support and gives access to all hardware specific
parameters like displacement limits, positioning speed,
etc... The Setting view is mainly devoted to instrument
responsible and allows configuring higher-level
controllers. Finally the Launch-Pad view permits the
creation and the execution of a specific workflow.

The NomadCommandSystem library is a fundamental
component of the client architecture. It is designed as a
bridge between the client and the server. It abstracts the
way to request the server and it mainly uses Corba proxy
objects to communicate with server. It implements some
Corba IDL interfaces since it also acts as a server from
the Corba point of view.

To minimise the coding work we have designed an
XML file format to describe controllers and drivers” GUI
without writing any Java SWT code. However, some
specific GUI behaviours that cannot be obtained by XML
description are directly coded in Java SWT. Some
additional configurations files are required by the client
application to start. They concern for example label text
properties.

Nomad Monitor

We have designed a NOMAD Monitor application
written in Java RCP to visualise the actual status of the
NOMAD Server system. The application offers the list of
the controllers and drivers showing all their property and

809

WEPKS014

the associated values. Controller and driver objects are
loaded by requesting the Nomad Server. Nomad Monitor
enables debugging controller and driver execution and
acts also a configuration manager giving the possibility to
dynamically add a new controller or a new driver while
the server is running.

Web Spy Server

To provide the user with a maximum of information to
promptly react in case of a problem or simply to remotely
verify the status of the measurement we have developed a
web server that retrieves periodically from NOMAD
Server all the actual values of properties. An instrument
specific web page is then updated to provide all important
information on the instrument (see Fig. 2).

COUNTING

_— . mple

LIVAsOS

LVASOS t= 50K 228

Figure 2: Layout of the web spy for the instrument IN4.

INTER-APPLICATION
COMMUNICATION

The CORBA [5] architecture has been chosen to make
the connection between the C++ server and the Java
client. The CORBA standard offers a flexible
interoperability service through the definition of IDL
interfaces and its implementations provide good
performances in regard of other inter-application
communication like, for instance, Web services. However
we made the choice to minimize the dependency to
CORBA by avoiding the number of CORBA objects for
which life cycle is not so easy to manage in C++ and
leave them only to the communication layer. For this
reason, all our CORBA objects are wrapped into Adapter
objects (client and server) that we call Accessors. Server
and clients use a two-way communication for:

e access/execute: the clients request the server to get or

set a value, to execute tasks, etc...

e provider: to provide the actual values of the variables

of the system (e.g. the properties of the instrument)

¢ notify: the server notifies the client when a server

variable has changed.

For the client to server requests (on a user request), the
client contacts directly the server through the CORBA
Accessor objects. The server to client request uses the
Observer pattern to implement an event-handling system.

NOMAD server registers CORBA subscriber objects to
dispatch events to them. The server and the clients both

810

Proceedings of ICALEPCS2011, Grenoble, France

use a Producer/Consumer pattern for respectively send
and process the event, resulting in an asynchronous event
notification. Figure 3 shows a simplified example of
server to client forward and backward communication.
The Access Data model illustrate the different patterns,
synchronous and asynchronous messages from the
notification of the server of a value changed to the call of
the client for getting the value.

server client
@ Database. rW| "ml rﬁmw' rW| |'W|
T 1 regit T
i I , —
| 3 servae | -
| 3iseralie | 3.L: propdrty changed i ’llJ
= 1 i
...... L !
5: notify |
! E)|
| <
e -
| e T e
17.3.1.1: get <

Figure 3: Data Access sequence.

The distributed Publisher/Subscriber objects when the
client and the server communicate over a network offers
great advantages to refresh the client only when needed
and prevent from using client polling, but one drawback
is that we can face client firewall port denials.

THE NOMAD SERVER LAYERS

The NOMAD server application is a multi-threaded

application designed in three distinct layers.

e Data Provider is the part of the server that stores the
data model, e.g. the hierarchy of controllers and
drivers with their associated properties. We also store
the list of commands accessible from each controller
and driver and their current state. This is the data
representation of the controllers and drivers running
in NOMAD server for a specific instrument (loaded
from the configuration files).

e Command can be considered as the business logic
layer. It is responsible to execute the requested
commands to the controllers and drivers. Each
controller or driver accesses its property data from
the Data Provider layer. We have designed a
framework of classes for controller and drivers to
facilitate the business code integration. We have
chosen to implement an event-driven programming
[6] model to react easily to the real instrument
dynamic behaviour (listening to sensors).
AbstractController is the abstract class to specialize.
It contains access methods to associated properties
that are bridges to the Data Provider data model. It
implements the methods execute, refreshSetValue,
updateProperty. The method execute contains the
execution code of the different registered commands.
The most important command is start. The
refreshSetValue is the function implementing how
the controller reacts when one of its properties
change. This is the way to spread information from
the high-level layer (controller) to the low-level layer
(driver). The wupdateProperty is the function

Software technology evolution

Proceedings of ICALEPCS2011, Grenoble, France

describing how the controller reacts to the change of
a property of one of its linked controllers or drivers.
This is the way to spread information from the low-
level layer to the high-level layer. NOMAD has at
present about 250 controllers (from the most general
to the most instrument specific) and 150 drivers
available.

Error management controls the way NOMAD server
reacts to the real behaviour of the instrument that can be
seen as a complex system depending on many
uncontrolled parameters. During the development phase
we have rarely access to the real instrument therefore, all
the tests performed in the lab cannot be exhaustive. To
limit error’s occurrence we run logical unitary and
functional tests with a basic simulation of the system. A
second series of tests aim the verification of the
consistency of all instrument configurations. Unexpected
behaviours can lead to exceptions, reported in the log
files, or to crashes. The last are notified by mail to the
developer’s team together with the maximum of available
information to allow further analysis of the problem.
Errors connected to defective behaviour of the instrument
generate a series of alarms or warnings that are notify by
mail to the instrument responsible.

e

qqqqq

Figure 4: An example of abstract controller.

INSTRUMENT ABSTRACTION

Abstract controllers are used to hide from users the
specific underlying hardware or control sequences. It
provides an interface relevant to a specific function and
then passes user requests to the more specific instances.

The main purpose of the instrument control software
renewal is to free human resources and re-uses them to
integrate prototyped versions of scientific methods into
NOMAD. The main objective is to perform faster and
more accurate measurement through intelligent scientific
methods and thus increase the efficiency of instruments.

Handling instrument methods complexity, instruments
control methods appears at first glance as complex and of
large variety. The scientific analysis shows that
instrument and scientific methods can be well organized
into common elements with specific parameterization.

They are organized in term of primary and secondary
spectrometer, sample orienteer, basic scattering and

Software technology evolution

WEPKS014

orientation strategies. Presently, the design of the
scientific methods shows that only a few set of objects are
actually needed. The present complexity and variety
comes from the fact that mathematical models are merged
into single routines, rigidifying the code. As well, science
groups have different notations referring to the same
scientific concepts. These will be handled by the GUI,
letting the physics concepts behind untouched. Fig. 4
depicts and example of abstract controller that regroup in
one single interface all the quantities needed to properly
initialise a three-axis spectrometer and prepare it for the
experiment. Complex instrument’s setup but also
alignment and acquisition sequences have been optimized
and specifically coded in NOMAD to get the best out of
the available beam-time and to facilitate users’ tasks.

CONCLUSION

After an initial phase of heavy debugging, NOMAD is
meanwhile installed on all ILL’s instruments for motors
and general hardware setup. So far, more than 20
instruments are fully controlled with it and more are
added on a regular base. In addition, 10 installations have
been performed to drive technical equipments within the
Technical and Project Department. NOMAD includes
meanwhile all the hardware devices present at the ILL
and all the generic sample environment modules as well
as all the instruments’ specific ones. It provides the users
the freedom to configure dynamically the equipment
needed for a specific experiment. The full integration
between sequencer, hardware devices and sample
environment allows a much better event handling and full
synchronization. As well, physical quantities, like
energies or wavelength, are compounds of several
hardware components. The control of the instrument
directly through physical values, those who have a
meaning for the user, implied a new way of managing
interconnected hardware pieces. Giving control at a more
physical than hardware level is in the spirit of opening our
instruments suite to a broader audience.

REFERENCES

[1] G. Reese, “Database Programming with JDBC and
Java” (2009);
htth:// java.sun.com/developers/Books/jdbc.

[2] B. Stroustrup, “The C++ Programming Language”,
Addison-Wesley Professional (2000).

[3] http://www.nexusformat.org.

[4] K. Arnold, J. Gosling and D. Holmes, “The Java
Programming Language”, 3rd Edition Addison-
Wesley Professional (2000).

[5] S. Vinoski, “CORBA: Integrating Diverse
Applications Within Distributed Heterogeneous
Environments”, IEEE Communications Magazine,
Vol. 14, No. 2 (1997).

[6] S. Ferg, “Event-Driven Programming: Introduction,
Tutorial, History” (2006); http://Tutorial
_EventDrivenProgramming.sourceforge.net

811

