Paper | Title | Other Keywords | Page |
---|---|---|---|
MOAM6P60 | Recent Progress of J-PARC MR Beam Commissioning and Operation | injection, resonance, operation, proton | 21 |
|
|||
The main ring (MR) of the Japan Proton Accelerator Research Complex (J-PARC) has been providing 30-GeV proton beams for elementary particle and nuclear physics experiments since 2009. The beam power of 390 kW has been recently achieved with 2·1014 protons per pulse and the cycle time of 2.48 s for the neutrino oscillation experiment. Main efforts in the beam tuning are to minimize beam losses and to localize the losses at the collimator section. Recent improvements include the 2nd harmonic rf operation to reduce the space charge effect with a larger bunching factor and corrections of resonances near the operation setting of the betatron tune. Because the beam bunches were longer with the 2nd harmonic rf operation, the injection kicker system was improved to accommodate the long bunches. We plan to achieve the target beam power of 750 kW in 2018 by making the cycle time faster to 1.3 s with new power supplies of main magnets, rf upgrade and improvement of injection and extraction devices. The possibility of the beam power beyond 750 kW is being explored with new settings of the betatron tune. | |||
![]() |
Slides MOAM6P60 [9.968 MB] | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPR001 | Figure-8 Storage Ring – Investigation of the Scaled Down Injection System | injection, detector, simulation, experiment | 41 |
|
|||
To store high current ion beams up to 10 A, a superconducting storage ring (F8SR) is planned at Frankfurt university. For the realisation, a scaled down experimental setup with normalconducting magnets is being build. Investigations of beam transport in solenoidal and toroidal guiding fields are in progress. At the moment, a new kind of injection system consisting of a solenoidal injection coil and a special vacuum vessel is under development. It is used to inject a hydrogen beam sideways between two toroidal magnets. In parallel operation, a second hydrogen beam is transported through both magnets to represent the circulating beam. In a second stage, an ExB-Kicker will be used as a septum to combine both beams into one. The current status of the experimental setup will be shown. For the design of the experiments, computer simulations using the 3D simulation code bender were performed. Different input parameters were checked to find the optimal injection and transport channel for the experiment. The results will be presented. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPR012 | The New HL-LHC Injection and Transport Protection System | injection, simulation, brightness, proton | 81 |
|
|||
The High-Luminosity LHC (HL-LHC) upgrade represents a challenge for the full chain of its injectors. The aim is to provide beams with a brightness a factor of two higher than the present maximum achieved. The 450 GeV beams injected into the LHC are directly provided by the Super Proton Synchrotron (SPS) via two transfer lines (TL), TI2 and TI8. Such transfer lines are both equipped with a passive protection system to protect the LHC aperture against ultra-fast failures of the extraction and transport systems. In the LHC instead, the injection protection system protects the cold apertures against possible failures of the injection kicker, MKI. Due to the increase of the beam brightness, these passive systems need to be upgraded. In this paper, the foreseen and ongoing modifications of the LHC injection protection system and the TL collimators are presented. Simulations of the protection guaranteed by the new systems in case of failures are described, together with benchmark with measurements for the current systems. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPR024 | General Formula to Deduce the Space Charge Tune Spread From a Quadrupolar Pick-Up Measurement | space-charge, coupling, resonance, pick-up | 120 |
|
|||
In 1966, W. Hardt derived the oscillation frequencies obtained in the presence of space charge forces and gradients errors for elliptical beams. Since then, a simple formula is usually used to relate the shift of the quadrupolar mode (obtained from the quadrupolar pick-up) and the space charge tune spread, depending only on the ratio between the two transverse equilibrium beam sizes. However, this formula is not always valid, in particular for machines running close to the coupling resonance Qx = Qy with almost round beams. A new general formula is presented, giving the space charge tune spread as a function of i) the measured shift of the quadrupolar mode, ii) the ratio between the two transverse equilibrium beam sizes and iii) the distance between the two transverse tunes. | |||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPL020 | Online Measurement of the Energy Spread of Multi-Turn Beam in the Fermilab Booster at Injection | booster, injection, linac, software | 237 |
|
|||
Funding: Work supported by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy Abstract: We have developed a computer program interfaced with the ACNET environment for Fermilab accelerators to measure energy spread of the proton beam from the LINAC at an injection kinetic energy of 400 MeV. It uses a digitizing oscilloscope and provides the user the ability to configure scope settings for optimal data acquisition from a resistive wall monitor. When the program is launched, it secures complete control of the scope. Subsequently, a special “one-shot” timeline is generated to initiate the beam injection into the Booster. After the completion of the beam injection from the LINAC, a gap of about 40 ns is produced in the Booster beam using a set of kickers and line-charge distribution data is collected for next 200 μs. The program then analyzes the data to extract the gap width, beam revolution period and beam energy spread. We illustrate a case with an example. We also present results on beam energy spread as a function of beam intensity from a recent measurement. Author would like to thank S. Chaurize, C. Drennan, W. Pellico, K. Seiya, T. Sullivan and K. Triplett |
|||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||