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Abstract 
In 1966, W. Hardt derived the oscillation frequencies 

obtained in the presence of space charge forces and gradi-
ents errors for elliptical beams. Since then, a simple for-
mula is usually used to relate the shift of the quadrupolar 
mode (obtained from the quadrupolar pick-up) and the 
space charge tune spread, depending only on the ratio 
between the two transverse equilibrium beam sizes. How-
ever, this formula is not always valid, in particular for 
machines running close to the coupling resonance Qx = Qy 
with almost round beams. A new general formula is pre-
sented, giving the space charge tune spread as a function 
of i) the measured shift of the quadrupolar mode, ii) the 
ratio between the two transverse equilibrium beam sizes 
and iii) the distance between the two transverse tunes. 

INTRODUCTION 
The incoherent direct space charge tune spread is a 

fundamental parameter in the beam dynamics of high-
intensity high-brightness beams but most of the time it is 
only computed analytically or simulated. It would be 
good to be able to measure it in running machines, which 
is possible with quadrupolar pick-ups by looking at the 
shift of the quadrupolar mode with intensity (note that 
there is no shift of the dipole mode with intensity due to 
the direct space charge as the latter follows the evolution 
of the beam centre and does not modify its motion). Since 
the derivation from W. Hardt of the oscillation frequen-
cies obtained in the presence of space charge forces and 
gradients errors for elliptical beams [1], a simple formula 
is usually used to relate the (horizontal) space charge tune 
spread to the (horizontal) shift of the quadrupolar mode 
due to intensity, which depends only on the ratio between 
the equilibrium rms vertical beam size y0 and the equilib-
rium rms horizontal beam size x0 [2,3,4] 

                 

, (1) 

where 2 Qx0 is the low-intensity quadrupolar tune and Q2x 
is the intensity-dependent quadrupolar tune. 

However, Eq. (1) is not always valid and it corresponds 
to the case when the coupling between the two transverse 
planes, introduced by space charge, is neglected. This 
formula is in particular not valid for machines running 
close to the coupling resonance Qx = Qy with almost 

round beams, which is the case of many machines (and in 
particular of the CERN LHC injectors where we plan to 
measure the space charge tune spread using quadrupolar 
pick-ups) and the purpose of this paper is to provide the 
more general formula which depends also on the distance 
between the two transverse tunes [5]. Note that the ex-
treme cases of a small or large tune split were already 
discussed in Ref. [6] for the case of a round beam. 

The (2D) transverse envelope equations are first re-
viewed in Section 1, as well as the coupled equations to 
be solved in the presence of small perturbations on top of 
equilibrium beam sizes. The usual Eq. (1) is then recov-
ered in Section 2 in the uncoupled case. The new formula 
providing the space charge tune spread in the general case 
(i.e. also close to the coupling resonance) is finally de-
rived and discussed in Section 4.     

TRANSVERSE ENVELOPE EQUATIONS 

The (2D) transverse envelope equations are now well-
known and used [7,8] in particular since the work of Sa-
cherer [9] who showed that the envelope equations de-
rived by Kapchinsky and Vladimirsky (known as the KV 
equations) [10] for a continuous beam with uniform 
charge density and elliptical cross-section are also valid 
for general beam distributions if one considers the second 
moments only. Considering a particle in an ensemble of 
particles which obeys the single-particle equations, add-
ing the space charge force to the external (linearized) 
force and averaging over the particle distribution, the 
equations of motion for the centre of mass can be ob-
tained (note that due to Newton’s third law the average of 
the space charge force is zero). Looking at the second 
moments and in particular at the position and momentum 
offsets of the particles from their respective averages, the 
2D transverse envelope equations can finally be ob-
tained [7,8] 

  (2) 

with  

                      (3) 

                  
 (4) 

where  stands for the derivative with respect to the azi-
muthal coordinate s, x,y are the transverse rms beam 
sizes, Kx,y describe the transverse external forces, x,y,rms 
are the transverse rms beam emittances and Ksc is a coef-
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ficient proportional to the horizontal space charge tune 
spread (considering that the space charge tune spread 
extends from the low intensity tune to the tune with max-
imum space charge tune shift) through (in the smooth 
approximation) [11] 

         

where R is the average machine radius, Qx0 is the low-
intensity horizontal tune and a0 and b0 are the horizontal 
and vertical equilibrium beam sizes (obtained from 
Eq. (2) when the terms with the derivative are zero). Both 
transverse planes have thus to be treated jointly for high-
intensity beams due to the space-charge coupling. 

The beam may execute some collective motion on top 
of the equilibrium beam sizes 

where the perturbations a and b are considered small 
with respect to the equilibrium beam sizes. Linearizing 
the equations yields 

with 

Using the smooth approximation  

with  = 0 t, where 0 is the angular revolution frequen-
cy and t the time. 

FAR FROM THE COUPLING RESO-
NANCE INDUCED BY SPACE CHARGE 
Far from the coupling resonance Qa = Qb, the two equa-

tions of Eq. (14) can be considered uncoupled and the 
solutions of the homogeneous equations are given by 

 
     

Starting from the definition of Qa in Eq. (13) and express-
ing Ksc with respect to the space charge tune spread (using 
Eq. (5)), Eq. (1) can be recovered, where Qa is noted there 
Q2x. Figure 1 shows how the relation between the space 
charge tune spread and the measured quadrupolar tune 
shift varies with the ratio of the transverse equilibrium 
beam sizes. 

              

Figure 1: Ratio between the space charge tune spread and 
the measured quadrupolar tune shift with respect to the 
ratio of the transverse equilibrium beam sizes. 

CLOSE TO THE COUPLING RESO-
NANCE INDUCED BY SPACE CHARGE 

Close to the coupling resonance Qa = Qb, the solutions 
of the coupled equations of Eq. (14) are a bit more in-
volved. The coupled oscillations can be solved by search-
ing the normal (i.e. decoupled) modes (u,v) linked by a 
simple rotation (see also Fig. 2) 

ΔQx , spread
SC = − ΔQx , linear shift

SC =
Ksc R

2
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,    (5) 
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The coupled equations can finally be re-written 

d 2Δa
dφ 2

+Qa
2 Δa = K R2 Δb , 

  (14) 
d 2Δb
dφ 2

+Qb
2 Δb = K R2 Δa , 
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where  is the coupling angle (equal to 0 in the absence if 
coupling and to  45 deg in the presence of full coupling). 

Figure 2: Tilted normal modes due to coupling. 

The equations of the two normal modes are given by 

where the  sign depends on the sign of  (it should be 
the same sign as the one of ). 

 The new formula can then be deduced and it is given 
by 

                      

                                

The observable from the quadrupolar pick-up (the quad-
rupolar tune shift) is q and the first part of Eq. (24) is the 
usual formula (see Eq. (1)). Solving Eq. (24) yields the 
new general formula giving the horizontal space charge 
tune spread as a function of the ratio between the vertical 
and horizontal equilibrium beam sizes (x), the distance 
between the transverse tunes (y) and the measured quad-
rupolar tune shift (q) [5] 

with the – sign when  > 0 (and the + sign when  < 0). 
The ratio between the new formula from Eq. (28) and the 
usual formula from Eq. (1) is plotted in Fig. 3 for the 
example case q = 0.4, where it can be seen that the usual 
formula should not work for the machines running close 
to the coupling resonance with almost round beams, as 
the CERN LHC injectors. More detailed (2D) plots are 
shown in Fig. 4 for different parameters, revealing that a 
difference up to a factor ~ 1.5-2 can be reached in some 
cases. 
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Using the fact that  
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and therefore Eq. (18) can be re-written 
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Figure 3: Ratio between the new formula from Eq. (28) 
and the usual formula from Eq. (1) as a function of x and 
y, for the example case q = 0.4 [5]. 
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tween the vertical and horizontal equilibrium beam sizes 
and the distance between the transverse tunes, for the 
example case of a measured quadrupolar tune shift of 0.4. 
Some example cases are also shown in Fig. 4 on 2D plots, 
where it can be seen that differences from the usual for-
mula can be as large as a factor ~ 1.5-2. These results 
should be checked by simulations and beam-based meas-
urements in the running machines. 
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