Paper | Title | Page |
---|---|---|
TUZG02 | Status of Hadrontherapy Facilities Worldwide | 978 |
|
||
Especially within the last years a remarkable dynamics can be observed with respect to the realization of new hadrontherapy facilities. The reasons are the development of new treatment modalities like pencil beam scanning, but also commercial aspects, arising from the number of patients that would profit from this treatment and the according demand of such facilities. The interest of industrial firms in constructing and operating 'turn-key' facilities has increased and at present several firms provide such facilities for proton treatment as well as for light ion (and proton) treatments. This presentation gives an overview of basic biophysical properties and the treatment modalities, the status of existing and planned facilities as well as developments on this field. | ||
![]() |
Slides | |
TUOCG01 | The Heidelberg Ion Therapy (HIT) Accelerator Coming into Operation | 979 |
|
||
The Heidelberg Ion Therapy Facility (HIT) is the first dedicated proton and carbon therapy facility in Europe. It uses full three dimensional intensity-controlled raster scanning as basic treatment technique. The commissioning of the accelerator with beam was successfully finished for two fixed-beam treatment places in December 2007. Therefore a library of 40000 combinations of beam properties (ion type, treatment place, energy, intensity, beam size) is now offered to the treatment technique teams preparing the treatment systems for the clinical use. The HIT facility also comprises a gantry with full scanning properties constituting the only carbon ion gantry worldwide. The gantry can be rotated by 360 degree, so that the beam may be aimed at the patient from arbitrary directions. Commissioning with beam of the gantry was started in January 2008 when the first beams were transported successfully into the treatment room. The talk will report on experiences and results of the commissioning of the accelerator sections. It puts special emphasis on the subject of preparing the enormous variety of beam properties in an efficient and reliable way. | ||
![]() |
Slides | |
TUOCG02 | Status Report on the Centro Nazionale di Adroterapia Oncologica (CNAO) | 982 |
|
||
The Centro Nazionale di Adroterapia Oncologica (National Center for Oncological Hadrontherapy, CNAO) is the Italian center for deep hadrontherapy. It will deliver treatments with active scanning both with proton and carbon ion beams. The accelerator complex is based on a 25 m diameter synchrotron capable of accelerating carbon ions up to 400 MeV/u and protons up to 250 MeV. Four treatment lines, in three treatment rooms, are foreseen in the first stage. In one of the three rooms a vertical and a horizontal fixed beam lines are provided, while in the other two rooms the treatment will be administered with horizontal beams only. The injection chain is positioned inside the synchrotron ring itself, to save space and to better exploit the two non-dispersive regions in the synchrotron. The injection chain is made by a 8 keV/u Low Energy Beam Transfer line (LEBT), a RFQ accelerating the beam to 400 keV/u, a LINAC to reach the injection energy of 7 MeV/u and a Medium Energy Beam Transfer line (MEBT) to transport the beam to the synchrotron. This report describes the design and the performances of the CNAO complex, and reports about the status of the commissioning of the machine. | ||
![]() |
Slides | |
TUPC106 | Optimization of Electron Linac Operating Conditions for Photonuclear Isotope Production | 1308 |
|
||
The communication describes the method for optimizing the high-power Linac regime (electron energy, pulsed current and beam size, pulse repetition rate) and the composition of output devices to provide the maximum photonuclear yield of isotope product with the maintenance of thermal stability of structural elements. To exemplify, the results of accelerator KUT-30 (45 MeV, 10 kW) optimization at conditions of medical isotope Cu-67 production are reported. Simulation based on a modified PENELOPE/2006 code was employed to compute the Cu-67 generation rate in the Zn target, and also the absorbed radiation power in output device elements for different operating conditions of the accelerator with due regard for its loading characteristic. The simulation results were used to calculate the target and the converter (Ta) temperature at various thicknesses of the latter and at real cooling parameters. Conditions have been established for the maximum Cu-67 yield with keeping thermal stability of the target device. | ||
TUPP110 | Rotative Systems for Dose Distribution in Hadrontherapy (Gantries) | 1779 |
|
||
Tumour treatments with high velocity ion beams or protons are characterised by a great depth precision (Bragg pic) and a low divergence for dose delivery in very small volumes. In order to spare normal tissues before and around the tumour it is necessary to have the choice of the beam incidence because the patient cannot be moved. Different devices have been built mainly exocentric and isocentric. Many others are being studied. Cryogenic solutions are analysed to reduce the total mass in rotation. For example it would be very interesting to choose a superconductive solution for the last 90° dipole. | ||
TUPP111 | Magnetic Design Improvement and Construction of the Large 90o Bending Magnet of the Vertical Beam Delivery Line of CNAO | 1782 |
|
||
The CNAO (Centro Nazionale di Adroterapia Oncologica) is the medical center dedicated to the cancer therapy, under construction in Italy. Protons with energy ranging from 60 to 250 MeV and carbon ions with energy 120 to 400 MeV/u will be delivered to patients in three different treatment rooms, of which one is served with both horizontal and vertical beams. The vertical line requires a 70 tons 90o bending magnet providing 1.81 T in a good field region of x = ± 100 by y = ± 100 mm2 with an integrated field quality (ΔBL/BL) at all field levels ≤ ± 2×10-4. Starting from the experience matured when constructing the large bending magnet for HICAT gantry, we have developed a design able to meet these more stringent requirements in both 2D and 3D and special attention was paid to the study of manufacturing tolerances | ||
TUPP112 | The RADIOTHOMX Project | 1785 |
|
||
The goal of this project is to develop a compact device, which could produce an intense flux of monochromatic X-rays for medical applications. It is based on Compton back-scattering resulting from collisions between laser pulses and relativistic electron bunches. Intense laser beams can be obtained with a high gain Fabry-Perot cavity coupled with a high average power fiber laser. Such a scheme is going to be developed by CELIA and LAL laboratories. The accelerator design to produce high repetition rate electron bunches at 50 MeV is under study. Two possibilities are being investigated: either a linear accelerator combined with a storage ring operating at an injection frequency high enough to preserve the electron beam characteristics or a high average current ERL. Both accelerator configurations aiming at producing X-ray fluxes higher than 1012 photons/s will be presented. | ||
TUPP113 | Intensity Upgrade Programme for the HIT Injector Linac | 1788 |
|
||
The Heidelberg Ion Beam Therapy Centre (HIT) is a worldwide unique radiation therapy facility and the first installation of its kind in Europe. It is equipped with three treatment rooms and has the potential to irradiate over 1000 patients per year. To guarantee such a high patient throughput, i.e. based on short irradiation times, and in order to prepare upcoming clinical requirements the currently limited beam intensity (particles per spill) needs to be increased. In an endeavour to provide optimum conditions for the patient treatment an intensity upgrade programme for the injector linac has been initiated. It affects primarily the ion source and the RFQ but also other linac components. The largest influence on the linac transmission is expected by a new RFQ design with optimised electrodes, which is currently commissioned on a test bench. The update programme is accompanied by beam dynamics simulations and machine studies. First improvements are presented and the status of the programme is given. | ||
TUPP115 | Variable Energy Protontherapy FFAG Accelerator | 1791 |
|
||
A hadrontherapy accelerator assembly based on an FFAG ring and a variable energy H- cyclotron injector has been designed in the frame of the RACCAM project. The FFAG ring allows 2.1 Tm top rigidity, corresponding to 180 MeV proton top energy and 21.6 cm penetration depth and to 50 MeV per nucleon for carbon ions suitable for biological R&D). Variable energy extraction, bunch to pixel 3D scanning and multiport beam delivery are proposed in this installation. A prototype of a spiral sector scaling type of FFAG dipole is being built for proving the feasibility of the FFAG ring, subject to a second contribution in the conference. This paper will describe the accelerator assembly parameters and the beam properties. | ||
TUPP116 | Development of Scanning System at HIMAC | 1794 |
|
||
A new treatment facility project, as an extension of the existing HIMAC facility, has been initiated for the further development of carbon-ion therapy. This new treatment facility will be equipped with a three-dimensional irradiation system with pencil beam scanning. For moving-tumor treatments with high accuracy, the most important part of the design study is how to realize this by scanning irradiation. For this purpose, we have studied a combination of the rescanning technique and the gated irradiation method. In order to avoid hot and/or cold spots even by a relatively larger number of rescannings within the acceptable irradiation time, we studied a fast scanning system. Further, this concept was experimentally demonstrated at the HIMAC. The design and the related study of the scanning system for the HIMAC new treatment facility will be presented. | ||
TUPP117 | Review of Energy Variation Approaches in Medical Accelerators | 1797 |
|
||
Most of cancer Radiation Therapy (RT) machines rely on a linac as the source of the treatment beam which can be an electron beam or an X-ray beam. In either case, an approach to vary the energy of the linacs output beam may be needed to target cancer tumors of different depths. Over the last two decades, multiple approaches for medical linac energy variation were proposed and some of them have been developed and implemented clinically. The most direct and conventional technique is to vary the amount of the RF power delivered to the linac and hence the energy output as required by the treatment plan. A second approach involves keeping the RF power delivered to the linac fixed but varying the power delivered to different sections of the linac by utilizing a mechanical or an electronic switch that controls the power distribution inside the linac. A third approach is to use two separate linac sections. The first section receives a fixed amount of RF power while the RF power delivered to second section is controlled using conventional microwave power splitting techniques. In this paper we will review the above approaches and discuss the advantages and disadvantage of each technique. | ||
TUPP118 | Update of an Accelerator Control System for the New Treatment Facility at HIMAC | 1800 |
|
||
Tumor therapy using energetic carbon ions, as provided by the HIMAC, has been performed since June 1994, and more than 3200 patients were treated until now. With the successful clinical results over more than ten years, we started to construct a new treatment facility. The new facility would have three treatment rooms; two of them have both horizontal and vertical fixed-irradiation-ports, and the other has a rotating-gantry-port. For all the ports, a scanning irradiation method is applied. The new facility will be constructed in conjunction with the HIMAC, and heavy-ion beams will be provided by the HIMAC accelerators. To fulfill requirements for the scanning irradiation, we are planning to update the accelerator control system. The proposed control system would enable us to provide heavy ions having variable energies within a single synchrotron-pulse; the beam energy would be changed a few tenth of times within a pulse by an energy step corresponding to a water range of 2 mm. Since the beam range would be adjusted without using range compensators, an excellent irradiation field could be obtained. We will present our project on updating the accelerator control system. | ||
TUPP119 | Lattice Design of a Carbon Ion Synchrotron for Cancer Therapy | 1803 |
|
||
A synchrotron accelerator for carbon ion cancer therapy was designed to be compact for a hospital based therapy facility. The circumference of the synchrotron is only 60 meter and the lattice is the FODO structure of 6 cells. Each cell has two dipole magnets with a angle of 30 degree. The lattice satisfies the requirement of Hardt condition for slow beam extraction which is to align the separatrices of different momenta of the particles. | ||
TUPP120 | Current Status of the IBA C400 Cyclotron Project for Hadron Therapy | 1806 |
|
||
Compact superconducting isochronous cyclotron C400 has been designed at IBA (Belgium) in collaboration with the JINR (Dubna). This cyclotron will be used for radiotherapy with proton, helium or carbon ions. 12C6+ and 4He2+ ions will be accelerated to 400 MeV/u energy and extracted by electrostatic deflector, H2+ ions will be accelerated to the energy 250MeV/u and extracted by stripping. We describe the parameters of the cyclotron, the current status of development work on the cyclotron systems. Reports on the status of the C400 project have been given regularly. Therefore, we will focus on the progress which has been achieved since recent reports in Cyclotron 2007 and EPAC 2006 conferences. The project will be ready to begin construction in the nearest future. | ||
TUPP121 | Spatial Resolution and Contrast of the Intensity Modulated Electron Beam by the Photocathode RF Gun for the Radiation Therapy | 1809 |
|
||
The radiation therapy of cancer is developing to un-uniform irradiation as the Intensity Modulated Radiation Therapy (IMRT), for reduce dose to normal tissue. Toward the IMRT, optical modulation of electron beam is studying by a photocathode RF gun. The photocathode RF gun can generate a low emittance electron beam by laser light. Because of the low emittance beam, the modulated electron beam is able to accelerate keeping shape. Electron beam were monitored by CCD cameras measuring the luminescence of the scintillator. Fundamental data such as the spatial resolution and the contrast of the optical intensity modulated electron beam are necessary. Spatial Resolution and Contrast of the Intensity Modulated Electron Beam by a Photocathode RF Gun will be reported. If the shape of the modulated electron beam is different, it may not keep beam shape from the non-symmetrically of the repulsion of the bunch inside. It will be reported that the relations of the beam-shape and the keeping ability of beam. | ||
TUPP123 | SCENT300, A Superconducting Cyclotron For Hadrontherapy | 1812 |
|
||
SCENT300 is a superconducting cyclotron able to deliver proton and C beam at 260 and 300 AMeV respectively. The study of the machine is near to be completed. The mechanical and magnetic design will be presented. The mechanical drawing and size of the cyclotron will be presented. The characteristics of the main coil and magnetic field will be presented. The method to change the magnetic setting for H2 and Carbon acceleration will be described. The acceleration system consisting of 4 RF cavities will be also described. | ||
TUPP124 | Status of the Particle Therapy Accelerator System Built by DANFYSIK A/S | 1815 |
|
||
Danfysik and Siemens have entered a cooperation to market and build Particle Therapy* systems for cancer therapy. The accelerators will consist of an injector (7 MeV/u proton and light ions) and a compact synchrotron able to accelerate proton beams up to 250 MeV and carbon ions up to 430 MeV/u in less than 1s. These beams can be slowly extracted over a period of up to 10s and delivered to treatment rooms through a choice of fixed-angle horizontal and semi-vertical beamlines and Gantry Systems. The intensity for protons and carbon ions will be sufficient for the needs of scanning beam applications. The design of a particular system, with three horizontal beamlines and one semi-vertical (45°) beamline, will be described. At the time of EPAC08, most components have been manufactured and hardware tested. The detailed layout of the facility will be presented, together with some of the components and their performance.
*Particle Therapy is a work in progress and requires country-specific regulatory approval prior to clinical use. |
||
TUPP125 | New Heavy-ion Cancer Treatment Facility at HIMAC | 1818 |
|
||
The first clinical trial of cancer treatment with carbon beams generated from the HIMAC was conducted in June 1994. Based on more than ten years of experience with HIMAC, we have proposed a new treatment facility for the purpose of further development of the heavy-ion cancer therapy with HIMAC. This facility, which is connected with the HIMAC synchrotron, consists of three treatment rooms: two rooms equipped with horizontal and vertical beam-delivery systems and one room with a rotating gantry. In both the fixed beam-delivery and rotating gantry systems, a 3D beam-scanning method is employed with gated irradiation with patients respiration in order to increase the treatment accuracy. Since the beam control for the size, the position and the time structure plays an essential role in the 3D beam scanning with the irradiation gated with respiration, the R&D study has been carried out with the HIMAC synchrotron since 2006. At December 2007, the Japanese government approved this project. We will report the design and R&D studies toward the construction of the new treatment facility. | ||
TUPP126 | Advanced Concepts for Particle-therapy Accelerators | 1821 |
|
||
Presently in Europe the first generation of particle-therapy accelerators is on the way from construction into operation. Each layout typically consists of two ion sources, a single injection line, a main synchrotron and beam transfer lines to several treatment rooms, one of them equipped with or foreseen for an ion gantry. The paper presents some possible enhancements for the next facility generation still based on existing layouts and design studies. The focus lies on an improved injection line and gantry concepts. A simplified injection line using a different configuration of ion sources and low-energy beam-transport line is described. It is based on combination of particle species with identical charge-to-mass ratio. Optimized gantry constructions are shown with mechanical designs driven by ion-optical demands, especially by the accuracy of the beam position at the isocentre. The enhancements presented in the paper may influence upgrades of existing centres or may be implemented in the design of newly developed next generation of particle- therapy accelerators. | ||
TUPP127 | Spill Structure Measurements at the Heidelberg Ion Therapy Centre | 1824 |
|
||
A specially designed accelerator facility for tumour irradiation located at the Heidelberg University Hospital was built up, the commissioning is still ongoing. Technically the Heidelberg Ion Therapy Center (HIT) fully relies on the three dimensional intensity-controlled rasterscan technique developed at GSI. This method demands for smoothly extracted ion beams (from protons to oxygen) from the HIT synchrotron. For this purpose a RF knock-out system consisting of a RF-exciter in combination with an electrostatic septum, two septum magnets and two sextupoles is used. To characterize the extracted beams scintillators for low intensities and ionization chambers for higher currents are installed in the high energy transport lines. Using a PXI-based DAQ system full spills are recorded with a time bin of 100 μs. Typical raw data will be shown as well as derived statistics like Fourier spectra and maximum-to-average ratios that proof the beam quality for its applicability to produce outstanding dose distributions via beam scanning. In addition, safety aspects like the performance of the spill interrupt procedure will be demonstrated with measured data. | ||
TUPP129 | Accelerator Development for Advanced Particle Beam Therapy | 1827 |
|
||
Particle beam therapy has become one of the most effective modalities of cancer treatment. High reliability, high throughput and high precision irradiation are strongly demanded for the therapy system. In order to meet the requirements, we have developed several key technologies of synchrotron-based accelerator system, such as multi-harmonic RF acceleration, extracted beam intensity feedback, respiration-synchronized operation and beam tuning for spot scanning irradiation. Almost all these technologies have already been applied to the proton beam therapy system at M. D. Anderson Cancer Center. Beam specifications required for the spot scanning irradiation have successfully been achieved. In this paper, present status of the accelerator development will be described. | ||
TUPP130 | Development of 3D Dose Verification System for Scanned Ion Beam at HIMAC | 1830 |
|
||
A 3D dose imaging system has been developed for a project of a new cancer treatment with 3D pencil beam scanning at HIMAC. This system provides the dose measurements easily and rapidly. this system consists of a water tank, fluorescent screen and charge-coupled device, set at isocentor. The fluorescent screen is directly attached to the downstream side of water tank. One of great advantages of this system is to obtain 2D dose map at once, by correcting LET-dependent quenching. The procedure to verify 3D dose distribution is based on the 2D dose measurement of slice-by-slice under a water depth. We will present the measurement result of 3D dose distribution by the proposed method, and its comparison with that by the ionization chamber. | ||
TUPP131 | Status of the Linac Components for the Italian Hadrontherapy Centre CNAO | 1833 |
|
||
The IH-DTL for the Linac in the Italian National Center for Hadron Therapy in Oncology CNAO will accelerate different ion species (C4+, O6+,3He+, H2+) to an energy of 7 MeV/u. The combined rebunching and accelerating beam dynamic concept ("KONUS", "Kombinierte Null Grad Struktur", combined zero degree structure) requires a real voltage distribution in all 56 accelerator gaps (distributed in 4 sections) matching very close to the design voltage distribution. The tuning of the mechanically finished and copper plated cavity started in January 2007, based on the experience from the similar IH-DTL for the HIT linac ("Heidelberger Ionenstrahl-Therapiezentrum", the Heidelberg ion beam therapy center). Very small differences in mechanical measures caused modified starting conditions, resulting in varying number and shape of fixed tuners, but nevertheless accurate field distribution. The CNAO Linac is at presently under commissioning, all linac components except the IH-DTL have been delivered to the center in November 2007. | ||
TUPP132 | Design, Construction and Low Power RF Tests of the First Module of the ACLIP Linac | 1836 |
|
||
ACLIP is a 3 GHz proton SCL linac designed as a booster for a 30 MeV commercial cyclotron. The final energy is 62 MeV well suitable for the therapy of ocular tumours or for further acceleration (up to 230 MeV) by a second linac in order to treat deep seated tumours. The possibility of using magnetrons as the source of RF power, to reduce the overall cost of the machine, is under investigation within a collaboration with the company e2v (Chelmsford, UK). ACLIP is a 5 modules structure coupled together. The first one (able to accelerate proton from 30 to 35 MeV) has been machined and completely the brazed. We plan to have the high power test by early fall 2008. In this paper we will review the main features of the linac and discuss the results of the RF measurements carried out on this prototype. | ||
TUPP133 | Assembly of the Carbon Beam Gantry at the Heidelberg Ion Therapy (HIT) Accelerator | 1839 |
|
||
The HIT facility comprises the only carbon ion gantry worldwide. This gantry is especially unique in offering fully flexible beam transport to the patient up to a magnetic rigidity of 6.6 Tm, equivalent to an energy of C-ions of 430 MeV/u. It includes a full 3D-beam scanning system and full medical treatment environment. The gantry can be rotated by 360 degree so that the beam may be aimed at the patient from arbitrary directions. Commissioning of the gantry with beam was started in January 2008, when the first beams were transported into the treatment room. The design and assembly of this gantry with a rotating mass on the order of 600 tons was a real challenge to the project partners involved, in particular the supplier MT Mechatronics. Given the tight tolerances for the position of the beam line components the survey and alignment procedure was difficult, since also the elastic deformation for the different rotation angles had to be taken into account. This presentation will report on the experiences and results of the assembly and alignment phases. Furthermore, the final performance reached for precision and reproducibility of the beam line components will be presented. | ||
TUPP134 | Commissioning of the Carbon Beam Gantry at the Heidelberg Ion Therapy (HIT) Accelerator | 1842 |
|
||
The HIT facility comprises the only carbon ion gantry worldwide. This gantry is especially unique in offering fully flexible beam transport to the patient for carbon ions up to an energy of 430 MeV/u. It includes a full 3D-beam scanning system and full medical treatment environment. The gantry can be rotated by 360 degree so that the beam may be directed at the patient from arbitrary directions. Commissioning with beam of the gantry was successfully started in January 2008 when the first proton and carbons beams were transported into the gantry treatment room. Based on theoretical calculations for rotation independent settings of the beam optics, the beam commissioning aims for an efficient practical way to realize the full variety of required beam properties (2 ion types, 10 intensities, 255 energy steps, and four beam sizes) in the isocenter independent of the gantry angle. The presentation will report on the concept and progress of the beam commissioning process. |