

Introduction

Heidelberg Ion Therapy Centre:

- Europe's first dedicated particle therapy facility
- World's first carbon 3D rasterscan therapy facility
- World's first carbon gantry
- 1000 Patients / year

651

Outline

- Overview of HIT
- 3D Rasterscanning
- Beam performance
- Outlook

Project Organization

Heidelberg University Hospital

D. Ondreka, GSI

EPAC 2008, Genova

Facility Layout

- 2 ECR ion sources (p, C)
- 7 MeV/u injector linac
- Compact synchrotron
 - Circumference 65 m
 - KO extraction (bunched)

- Extraction time 5 s
- Spill interruptions
- 3 treatment places
 - 2 horizontal fixed beam
 - 1 isocentric gantry
- 1 research & QA place

Accelerator Milestones

Start accelerator assembly	10/2005
First beam ion sources	4/2006
First beam linac	12/2006
Start gantry assembly	1/2007
First beam treatment place	3/2007
Patient beam places H1 + H2	12/2007
First beam gantry	1/2008
Patient beam QA place	4/2008

GSI

Rasterscan Method

Intensity-Controlled Rasterscan Technique, Haberer et al., GSI, NIM A, 1993

Medical Requirements:

651

- High dose conformality
- Steep lateral fall-off
- Minimal treatment time

Treatment System:

- Lateral scanning with fast scanning magnets
- Intensity control

Accelerator:

- Variation of energy, focus and intensity
- High stability over spill
- High spill duty factor
- Spill interruptions

D. Ondreka, GSI

EPAC 2008, Genova

Control System Aspects

Pencil Beam Library

C ⁶⁺	Range	Steps
Energy	88 – 430 MeV/u	255
Focus	4 – 10 mm FWHM	4 [6]
Intensity	10 ⁷ – 4·10 ⁸ lons/Spill	10 [15]

10000 Combinations / Place demand:

651

- Integration of beam diagnostics
- Efficient, performant and reliable data handling
- Interpolation mechanism for energy dependence
- Ion optics interface for position and width correction
- Standard protocols for accelerator performance check

Ц±Z

0.28 5011

setzen lesen

Ende

HIMSA

382<mark>2</mark>01

EPAC 2008, Genova

Beam Spot Sizes

Beam profiles in isocenter (C, 250 MeV/u, 10 mm FWHM)

Adjusted size in isocenter (C)

651

Energy dependent settings of focusing quadrupole: Cubic spline interpolation over base points

Beam Stability

MWPC in beam line (C, 250 MeV/u, one interruption)

Treatment monitoring system (C, 250 MeV/u, no interruption)

- Excellent stability of beam size and position at treatment place due to KO extraction (constant optics)
- No profile distortions due to spill interruptions
 - ➔ Very homogeneous lateral dose distributions

cf. Poster: "Beam Diagnostics for the HIT Accelerator", M. Schwickert, GSI, TUPC095

Spill Time Structure

IC in beam line (C, 250 MeV/u, 3.10⁸ ions, 3 interruptions)

- Excellent time structure due to bunched KO extraction
 - ➔ Fast scanning speed
- Spill interruption generated by switching off KO and shifting synchrotron RF
- Clean start of interruption requires fast spill abort magnet

cf. Poster: "Spill Structure Measurements at HIT", A. Peters, HIT, TUPP127

Beam Verification

Preliminary scanner commissioning results: Verification films (courtesy S. Grözinger et al., Siemens Medical Solutions)

Particle Therapy Getting to the Point

- p, 220 MeV/u, treatment monitor
- no position feedback
- no intensity feedback
- field size 18 x 10 cm

- C, 430 MeV/u, isocenter
- no position feedback
- field size 7 x 8 cm
- dose flatness ±2%

Summary and Outlook

- Accelerator commissioning finished for fixed beam places
- Accelerator now operated by HIT Staff (7/24)
- Gantry commissioning interrupted due to technical problems
- Presently preparations for patient treatment (HIT, Siemens)
 - Commissioning of treatment systems
 - Acceptance tests
 - Certification process
- First patient treatment in winter 2008
- Continuation of gantry commissioning in winter 2008
- Linac intensity upgrade in progress

cf. Posters:

"Assembly of the HIT Gantry", U. Weinrich, GSI, TUPP133 "Commissioning of the HIT Gantry", U. Weinrich, GSI, TUPP134 "Intensity Upgrade for the HIT Linac", R. Cee, HIT, TUPP113

Acknowledgements

- To all GSI colleagues involved in the HIT project, esp.
 - U. Weinrich, B. Franczak, A. Dolinskii, H. Eickhoff
 - the GSI commissioning team
- To the HIT colleagues
 - for good team play during commissioning
 - for many useful discussions about rasterscan therapy
- To Siemens Medical Solutions
 - for providing helpful information

Make it a real HIT!