A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

SPIRAL2

Paper Title Other Keywords Page
MOPCH103 SPIRAL2 RFQ Prototype – First Results rfq, vacuum, injection, ion 282
 
  • R. Ferdinand, R. Beunard, V. Desmezières, M. Di Giacomo, P. Robillard
    GANIL, Caen
  • A.C. Caruso
    INFN/LNS, Catania
  • S. Cazaux, M. Desmons, A. France, D. Leboeuf, O. Piquet, J.-C. Toussaint
    CEA, Gif-sur-Yvette
  • M. Fruneau, Y. Gómez-Martínez
    LPSC, Grenoble
  The SPIRAL2 RFQ has been designed to accelerate a 5 mA deuteron beam (Q/A=1/2) or a 1 mA particle beam with q/A=1/3 up to 0.75 MeV/A at 88MHz. It is a CW machine which has to show stable operation, provide the required availability and reduce losses to a minimum in order to minimize the activation constraints. Extensive modelisation was done to ensure a good vane position under RF. The prototype of this 4-vane RFQ has been built and tested in INFN-LNS Catania and then in IN2P3-LPSC Grenoble. It allowed us to measure the vacuum quality, the RF field by X-ray measurements, the cavity displacement and the real vane displacement during the RF injection. Different techniques were used, including an innovative and effective CCD measurement with a 0.6 μm precision. This paper outlines the different results.  
 
MOPCH106 An Innovative Method to Observe RFQ Vanes Motion with Full-scale RF Power and Water Cooling rfq, vacuum, LEFT, optics 288
 
  • A. France, O. Piquet
    CEA, Gif-sur-Yvette
  • R. Ferdinand
    GANIL, Caen
  The design of high current RFQs is heavily strained by thermo-mechanical considerations, which eventually have an impact on machining costs, cooling systems, etc. A 1-meter long copper prototype of the SPIRAL2 RFQ has been specifically built to corroborate design options. An innovative method has been developed, allowing real-time observation of mechanical deformations of RFQ vanes, with full-scale RF power and water cooling. Digital images are acquired by a CCD camera, and processed by a dedicated software. Processing includes contrast stretching, low-pass filtering, and block-correlation followed by interpolation. Sub-pixel relative motions of RFQ electrode ends are clearly detected and measured, with RMS errors of the order of 0.6 microns.  
 
MOPCH145 Tests Results of the Beta 0.07 and Beta 0.12 Quarter Wave Resonators for the SPIRAL2 Superconducting Linac linac, simulation 393
 
  • G. Olry, J.-L. Biarrotte, S. Bousson, C. Joly, T. Junquera, J. Lesrel, G. Martinet, D. Moura, H. Saugnac, P. Szott
    IPN, Orsay
  • P.-E. Bernaudin, P. Bosland, G. Devanz
    CEA, Gif-sur-Yvette
  New developments and tests have been carried out on low beta (0.07) and high beta (0.12) 88 MHz superconducting Quarter Wave Resonators. These resonators will be installed in the LINAC driver, respectively in the low beta section, composed of cryomodules A (developed at CEA-Saclay) and the high beta section composed of cryomodules B (developed at IPN-Orsay). Both resonators' types will be equipped with the same power coupler (developed at LPSC-Grenoble) and designed for a maximum power of 20 kW. RF tests results of the prototype cavities and power couplers are reported. The fabrication of the two cryomodules prototypes, fully equipped, is in progress in order to be ready for high power RF tests at 4.2 K at the beginning of 2007.  
 
MOPCH146 Status of the Beta 0.12 Superconducting Cryomodule Development for the Spiral2 Project cryogenics, linac, alignment, controls 396
 
  • H. Saugnac, J.-L. Biarrotte, S. Blivet, S. Bousson, C. Commeaux, C. Joly, T. Junquera, J. Lesrel, fl. Lutton, G. Martinet, G. Olry, P. Szott
    IPN, Orsay
  SPIRAL2 is a radioactive beams facility, composed of a superconducting linac driver, delivering deuterons with an energy up to 40 MeV (5 mA) and heavy ions with an energy of 14.5 MeV/u (1 mA). This facility is now fully approved by the French government. IPN Orsay is in charge of the study and manufacture of the beta 0.12 cryomodule of the superconducting LINAC. These cryomodule, designed for an overall cryogenic power of 30 W at 4.2 K, is composed of two quarter wave type 88 MHz rf resonator providing a minimum of 6.5 MV/m with a quality factor of 1 10 9, two tuning mechanisms controlling the resonator frequency and an alignment system allowing to adjust the cavity position with a ± 1 mm accuracy. Several tests performed on a first resonator prototype fabricated by the "Ettore Zanon SpA" Company, have validated the cavity and its auxiliary components design. A first cryomodule fully equipped (cavities, cryostat, tuning and alignment systems), planned to be tested at the beginning of 2007, is under manufacturing. The details of the cryomodule design and the resonator tests results are discussed in the paper.  
 
WEPCH007 Beam Dynamics Studies for the Spiral-2 Project ion, linac, dipole, proton 1930
 
  • J.-L. Biarrotte
    IPN, Orsay
  • P. Bertrand
    GANIL, Caen
  • D. Uriot
    CEA, Gif-sur-Yvette
  The SPIRAL-2 superconducting linac driver, which aims to deliver 5 mA, 20 A.MeV deuterons and 1 mA, 14.5 A.MeV q/A=1/3 heavy ions, is now entering the construction phase. It is composed of an injector composed of two ECR sources entering a 88 MHz RFQ, followed by a superconducting section based on independently phased quarter-wave cavities with warm focusing. This paper presents the status of the beam dynamics studies recently performed during this construction phase: consolidation and freezing of the linac design, update of the mass separation system or analysis of the proton capability.  
 
THPCH160 Theoretical Study and Experimental Result of the RF Coupler Prototypes of Spiral 2 simulation, vacuum, coupling, pick-up 3170
 
  • Y. Gómez-Martínez, D. Bondoux, JM. Carretta, J.-M. De Conto, M. Fruneau, A. Garrigue, D. Marchand, R. Micoud, E. Vernay, F. Vezzu
    LPSC, Grenoble
  • P. Balleyguier
    CEA, Bruyères-le-Châtel
  • M. Di Giacomo
    GANIL, Caen
  Spiral 2 is a 40 MeV superconducting linac under construction at GANIL. The RF couplers have to provide a 12 kW CW power to the cavities at 88 MHz. Two solutions corresponding to 2 different technologies have been designed and 2 prototypes have been built. We present the technical proposals and issues as well as the results (manufacturing, test at low and high power, multipacting…) leading to the final choice.