Paper | Title | Page |
---|---|---|
MOPB028 | Preservation of Very High Quality Factors of 1.3 GHz Nine Cell Cavities From Bare Vertical Test to Dressed Horizontal Test | 149 |
|
||
In this contribution we will report quality factor evolution of several different nine cell N doped cavities with very high Q. The evolution of the quality factor will be reported from bare to dressed in vertical test to dressed in horizontal test with unity coupling to dressed in horizontal test and CM-like environment/configuration (with RF ancillaries). Cooling studies and optimal cooling regimes will be discussed for both vertical and horizontal tests and comparisons will be drawn also for different styles titanium vessels. Studies of sensitivities to magnetic field in final horizontal configuration have been performed by applying a field around the dressed cavity and varying the cooling; parameters required for a very good flux expulsion will be presented. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
MOPB087 | Integrated High-Power Tests of Dressed N-doped 1.3 GHz SRF Cavities for LCLS-II | 342 |
|
||
New auxiliary components have been designed and fabricated for the 1.3 GHz SRF cavities comprising the LCLS-II linac. In particular, the LCLS-II cavity’s helium vessel, high-power input coupler, higher-order mode (HOM) feedthroughs, magnetic shielding, and cavity tuning system were all designed to meet LCLS-II specifications. Integrated tests of the cavity and these components were done at Fermilab’s Horizontal Test Stand (HTS) using several kilowatts of continuous-wave (CW) RF power. The results of the tests are summarized here. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB005 | Simulations of 3.9 GHz CW Coupler for LCLS-II Project | 1066 |
|
||
LCLS-II linac is based on XFEL/ILC superconducting technology. TTF-III fundamental power coupler for the 3.9 GHz 9-cell cavities has been modifies to satisfy requirements of LCLS-II, operating in CW regime. In this paper we discuss the results of COMSOL analysis of the possible modification of couplers, working at various operating regimes. We present also the results of mechanical study. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB011 | Superconducting Travelling Wave Accelerating Structure Development | 1085 |
|
||
Funding: Work supported by US Department of Energy # DE-SC0006300 The 3 cell superconducting TW accelerating structure was developed to experimentally demonstrate and to study tuning issues for a new experimental device - the superconducting traveling wave accelerator (STWA), a technology that may prove of crucial importance to the high energy SRF linacs by raising the effective gradient and therefore reducing the overall cost. Recently, a STWA structure with a feedback waveguide has been suggested. The structure was optimized and has phase advance per cell of 105° which provide 24% higher accelerating gradient than in SW cavities. Also STWA structure has no strong sensitivity of the field flatness and its length may be much longer than SW structure. With this presentation, we discuss the current status of a 3-cell L-band SC traveling wave along with the analysis of its tuning issues. Special attention will be paid to feedback loop operation with the two-coupler feed system. We also report on the development and fabrication of a niobium prototype 3-cell SC traveling wave structure to be tested at 2°K in fall 2015. |
||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB077 | Modified TTF3 Couplers for LCLS-II | 1306 |
|
||
The LCLS-II 4 GeV SC electron linac will use 280 TESLA cavities and TTF3 couplers, modified for CW operation with input power up to about 7 kW. The coupler modifications include shortening the antenna to achieve higher Qext and thickening the copper plating on the warm section inner conductor to lower the peak temperature. Another change is the use a waveguide transition box that is machined out of a solid piece of aluminum, significantly reducing its cost and improving its fit to the warm coupler window section. This paper describes the changes, simulations of the coupler operation (heat loads and temperatures), rf processing results and CW tests with LCLS-II dressed cavities. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB086 | LCLS-II Fundamental Power Coupler Mechanical Integration | 1340 |
|
||
Funding: DOE LCLSII is a planned upgrade project for the linear coherent light source (LCLS) at SLAC. The LCLSII linac will consist of thirtyfive 1.3 GHz and two 3.9 GHz superconducting RF continuous wave (CW) cryomodules that Fermilab and Jefferson Lab will assemble in collaboration with SLAC. The LCLSII 1.3 GHz cryomodule design is based on the European XFEL pulsed mode cryomodule design with modifications needed for CW operation. The 1.3 GHz cryomodules for LCLSII will utilize a modified TTF3 syle fundamental power coupler design. Due to CW operation heat removal from the power coupler is critical. This paper presents the details of the mechanical integration of the power coupler into the cryomodule. Details of thermal braids, connections, and other interfaces are discussed. |
||
![]() |
Poster THPB086 [1.031 MB] | |
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB089 | HOM Coupler Performance in CW Regime in Horizontal and Vertical Tests | 1349 |
|
||
Power dissipation in HOM coupler antenna can limit cavity gradient in cw operation. XFEL design of HOM coupler, feedthrough and thermal connection to 2K pipe was accepted for LCLS-II cavity based on simulation results. Recently a series of vertical and horizontal tests was done to prove design for cw operation. In vertical test was found no effect of HOM coupler heating on high-Q cavity performance. In horizontal cryostat HOM coupler was tested up-to 23MV/m in continuous wave mode. Result proves that XFEL HOM coupler meets LCLS-II specifications. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |
THPB105 | Demonstration of Coaxial Coupling Scheme at 26 MV/m for 1.3 GHz Tesla-Type SRF Cavities | 1397 |
|
||
Superconducting ILC-type cavities have an rf input coupler that is welded on. A detachable input coupler will reduce conditioning time (can be conditioned separately), reduce cost and improve reliability. The problem with placing an extra flange in the superconducting cavity is about creating a possible quench spot at the seal place. Euclid Techlabs LLC has developed a coaxial coupler which has an on the surface with zero magnetic field (hence zero surface current). By placing a flange in that area we are able to avoid disturbing surface currents that typically lead to a quench. The coupler is optimized to preserve the axial symmetry of the cavity and rf field. The surface treatments and rf test of the proto- type coupler with a 1.3 GHz ILC-type single-cell cavity at Fermilab will be reported and discussed. | ||
Export • | reference for this paper to ※ BibTeX, ※ LaTeX, ※ Text, ※ RIS/RefMan, ※ EndNote (xml) | |